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The technology for Visual Odometry (VO) that estimates the position and orientation of the moving
object through analyzing the image sequences captured by on-board cameras, has been well investigated
with the rising interest in autonomous driving. This paper studies monocular VO from the perspective of
Deep Learning (DL). Unlike most current learning-based methods, our approach, called DeepAVO, is
established on the intuition that features contribute discriminately to different motion patterns.
Specifically, we present a novel four-branch network to learn the rotation and translation by leveraging
Convolutional Neural Networks (CNNs) to focus on different quadrants of optical flow input. To enhance
the ability of feature selection, we further introduce an effective channel-spatial attention mechanism to
force each branch to explicitly distill related information for specific Frame to Frame (F2F) motion esti-
mation. Experiments on various datasets involving outdoor driving and indoor walking scenarios show
that the proposed DeepAVO outperforms the state-of-the-art monocular methods by a large margin,
demonstrating competitive performance to the stereo VO algorithm and verifying promising potential
for generalization.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

From Unmanned Ground Vehicles (UGVs) to Micro Aerial Vehi-
cles (MAVs), it is essential to know where autonomous robots are
and to perceive the surrounding area. Global Positioning System
(GPS) provides information about the position of the sensor in
the world coordinate. However, a precise self-localization purely
relying on the GPS is not sufficient for challenging environments
like indoor scenarios and urban canyons. In this situation, a more
precise measure or an alternative localization system is required
in the real application for autonomous driving.

The camera is a small, light-weighted sensor that provides rich
information about the environment around the sensing platform.
Moreover, it can recover the ego-motion from image sequences
by exploiting the consistency between consecutive frames [1].
Therefore, the concept of Visual Simultaneous Localization And
Mapping (V-SLAM) and Visual Odometry (VO) are proposed to
solve the well-known positioning problem, which estimates vehi-
cles’ position relative to its start point. As an essential task in
robotics and computer vision communities, VO has been widely
applied to various applications, ranging from autonomous driving
and space exploration to virtual and augmented reality. From the
perspective of the camera used, the VO methods consist of two
types: stereo VO and monocular VO. This work aims at investigat-
ing the monocular VO, for a single camera is cheaper, lighter, and
more general than a stereo rig. Especially when the ratio of stereo
baseline to depth is minimal, the stereo VO degenerates to the
monocular one.

Over the past thirty years, enormous work has been done to
develop an accurate and robust VO system. The traditional VO
algorithms can be divided into the feature-based method and the
direct method. Feature-based methods typically consist of camera
calibration, feature detection, feature matching, outlier rejection
(e.g., RANSAC), motion estimation, scale estimation, and optimiza-
tion (e.g., Bundle Adjustment). Unfortunately, how to detect appro-
priate features for recovering specific motions remains a
challenging problem. Unlike feature-based methods, direct meth-
ods track the motion of the pixel and obtain pose prediction by
minimizing the photometric error, so it is extremely vulnerable
to light changes. Moreover, the absolute scale estimation in the tra-
ditional monocular VO must use some extra information (e.g., the
height of the camera) or prior knowledge.

The emerging Deep Learning (DL), a data-driven approach, has
yielded impressive achievement in computer vision. Rather than
handcrafted features, DL that has the ability to extract deep fea-
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tures from the plain input, encodes the high-level priors to regress
camera poses. Compared with traditional VO, learning-based VO
has the advantage of low computation cost and no need for inter-
nal camera parameters. A few methods on DL have been proposed
for camera motion recovery. While achieving promising perfor-
mances, they do not take into account the different responses of
visual cues and the effect of pixels movement in different direc-
tions in the input image to the camera motion, thus may output
trajectories with large error. For learning-based VO, it should focus
more on geometric constraints than the ‘‘appearance” information
when harnessing Convolutional Neural Networks (CNNs) to extract
features. Optical flow, as the representation of the geometric struc-
ture, has been proved useful for estimating Frame to Frame (F2F)
ego-motion. [2] takes the raw optical flow calculated by Flownet
[3] as the input of the pose prediction network, which adopts the
structure of FlowNetS as the underlying CNN. Therefore, we take
the optical flow as input to the proposed model.

Guided by the previous considerations, we explore a novel
strategy for performing visual ego-motion estimation in this work.
Inspired by P-CNN VO[4], we extend the neural network into four
branches focusing on pixels movement in different directions in
the optical flow and then regress the global feature concatenated
from the four outputs to obtain F2F motion estimation. In particu-
lar, features extracted by each branch have been distilled by using
the attention mechanism to refine estimation. In this paper, many
quantitative and qualitative experiments in terms of precision,
robustness, and computation speed are conducted. The results
demonstrate that the proposed model outperforms many current
monocular methods and provides a competitive performance
against the classic stereo VO. In summary, our key contributions
are as follows:

� Novel visual perception guiding ego-motion estimation: By con-
sidering the four quadrants in optical flow and fusing the distill-
ing module into each branch encoder, the learning-based
DeepAVO model pays more attention to the visual cues that
are effective for ego-motion estimation.

� Lightweight VO framework with enhanced tracking perfor-
mance: The proposed DeepAVO model framework yields more
robust and accurate results compared with competing monocu-
lar VOs. The F2F VO calculation can be done within 12 ms, mak-
ing it practical and valuable in real-world applications.

� Extensive fresh scenes validation: The DeepAVO produces
promising pose estimation and maintains high-precision track-
ing results on various datasets involving outdoor driving and
indoor walking scenarios. Outstanding improvements in the
accuracy and robustness of VO are further demonstrated.

Our method outperforms state-of-the-art learning-based meth-
ods. Additionally, it works well in the new dataset, where learning-
based algorithms tend to fail due to different feature characteris-
tics. The rest of this paper is organized as follows: Section 2
reviews some related works, and Section 3 describes the proposed
architecture in detail. The performance of our approach is com-
pared with many current methods in Section 4. Finally, we con-
clude the paper in Section 5.
2. Related works

Visual odometry has been studied for decades, and many excel-
lent approaches have been proposed. In this section, we discuss
various algorithms and their differences from others. There are
mainly two types of algorithms in terms of the technique and
framework adopted: geometry-based and learning-based methods.
23
2.1. Methods based on geometry

Traditionally, the VO problem that relies on geometric con-
straints extracted from imagery can be solved by minimizing
reprojection errors or photometric errors. Thus, they can be further
categorized into feature-based and direct methods.

2.1.1. Sparse feature based methods
The standard approach is to extract a sparse set of salient fea-

tures (e.g., points, lines) in each image; match them in successive
frames, such as the algorithms in ORB-SLAM2 [5] and LIBVISO2
[6]; robustly recover camera motion using epipolar geometry;
finally, refine the pose through reprojection error minimization.
The majority of traditional VO algorithms [7] follows this proce-
dure, independent of the applied optimization framework.

A reason for the success of these methods is the availability of
robust feature detectors and descriptors that allow matching
between images even at the large inter-frame movement. Unfortu-
nately, handcrafted feature descriptors such as SIFT [8], ORB [9],
SURF [10] and other improved descriptor[11–13] designed for gen-
eral visual tasks, lack the response to motions. Instead, extra infor-
mation guided by geometric prior such as planar structures [14]
and vanishing points [15], is used for camera pose estimation in
specific environments, providing promising performance but lim-
ited generalization ability. Therefore, this paper will focus on min-
ing adaptive geometric features between frames using deep
learning techniques and attention mechanisms to improve the
positioning accuracy of visual odometry. Besides, we extract the
novel local feature that represent the pixel motion in different
directions to provide different guidance for pose estimation.

2.1.2. Direct methods
Feature extraction and matching that are key to determining

the performance of sparse feature-based methods are computa-
tionally expensive. However, outliers and mismatch often cause
VO algorithms to suffer from drifts over time. Direct Methods
[16] estimate structure and motion directly from the intensity val-
ues in consecutive images under the assumption of photometric
consistency, e.g., DTAM in [17], DSO in [18]. The local intensity gra-
dient magnitude and direction are used in the optimization com-
pared to sparse feature-based methods that only use salient
features without benefiting from rich information in the whole
image. Besides, semi-direct approaches achieve promising perfor-
mance in the monocular VO [19]20, which uses feature-
correspondence to avoid time cost of feature extraction from each
frame and increase accuracy in texture-less environments.

2.2. Methods based on learning

Taking advantage of an overwhelming availability of data, DL is
utilized to learn motion model and explore VO from sensor read-
ings with deep learning techniques. Many approaches without
explicitly applying geometric theory have been proposed to deal
with the challenges in the classic monocular VO systems, such as
feature extraction, depth estimation, scale correction, and data
association.

Some work based on Machine Learning (ML) techniques has
been proposed to solve the monocular VO problem. Taking optical
flow data as input, [21] that first tries to apply learning methods in
solving the VO problem trains a K Nearest Neighbor (KNN) regres-
sor for the monocular VO. [22] proposes the SVR VO to regress ego-
motion leveraging Support Vector Machine (SVM) by introducing
Gaussian Processes (GP), of which the performance is far behind
traditional methods. However, it has been widely demonstrated
that traditional ML techniques are inefficient when encountering
large or highly non-linear high-dimensional data. DL that automat-
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ically learns suitable feature representation from the large-scale
dataset, provides more promising performance. In this paper, we
mainly focus on DL-based monocular VO works.
2.2.1. Unsupervised methods
Mimicking the conventional structure from motion, a number

of algorithms that deal with the VO problem in an unsupervised
manner have emerged. Most of these methods are associated with
depth estimation [23–25]. SfmLearner [26] recovers the depth of
scenes and ego-motion from unlabeled sequences with view syn-
thesis using photometric error as supervisory signals. Its successor
[27] extends this work to take stereo image pairs as input and
recovers the absolute scale with the known camera baseline.
GeoNet [28] proposes an unsupervised learning framework for
jointly estimating monocular depth, optical flow, and camera
motion from video. NeuralBundler [29] introduces a hybrid VO sys-
tem that combines an unsupervised monocular VO with a pose
graph optimization back-end. D3VO [30] incorporates the deep
predictions of depth, pose, and uncertainty into a direct visual
odometry and defeats several popular conventional VO/VIO sys-
tems, such as DSO [18], VINS-Mono [31].

These unsupervised methods learn from large amounts of unla-
beled data. Although it breaks through the limitation of the
requirement for large amounts of labelled data in supervised learn-
ing, it can only process a limited number of consecutive frames due
to the fragility of photometric losses, resulting in high geometric
uncertainty and severe error accumulation.
2.2.2. Supervised methods
Recently, DL techniques such as CNNs and RNNs have been uti-

lized for pose estimation. DeMoN [32] jointly estimates depth and
motion from two consecutive images by formulating structure
from motion as a supervised learning problem. [2] takes the raw
optical flow calculated by Flownet [3] as the input of the pose pre-
diction network, which adopts the structure of FlowNetS as the
underlying CNN. P-CNN VO [4] exploits the best visual features
and proposes a VO, which outperforms other contemporary meth-
ods. Moreover, it is robust for the blur, luminance, and contrast
anomalies conditions. Deep Endovo [33] implements innovative
combinations of CNNs and RNNs called A Recurrent Convolutional
Neural Network RCNNð Þ to tackle the VO task. DeepVO [34] recovers
Fig. 1. The architecture of the proposed DeepAVO based monocular VO system. In this fig
is omitted before feeding the four parts of optical flow into CNNs.
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camera poses from image sequences by harnessing LSTM [35] to
learn historical information for current motion prediction. Based
on DeepVO, ESP-VO [36] extends into a unified framework to
directly infer poses and uncertainties. CL-VO [37] introduces Cur-
riculum Learning strategy for learning the geometry of monocular
VO by gradually making the learning objective more difficult dur-
ing training. DAVO [38] dynamically adjusts the attention weights
on different semantic categories for different motion scenarios to
estimate the ego-motion of a monocular camera. Besides, many
recent researches [39,40] focus more on efficient feature extraction
as local feature plays a vital role in VO task.

The methods above take the visual cues in the whole image
equally. However, the movement characteristics of different parts
in images captured by the camera and the attention to motion fea-
tures extracted by the network are ignored.
3. System model

In this section, we introduce our framework (Fig. 1) in detail.
Considering the significance of geometric structure for the VO task,
we calculate the optical flow discussed in 3.1 from the consecutive
RGB images. The Encoder module in 3.2 extracts high-level repre-
sentations, which are further distilled by the attention mechanism
in 3.3. We design the loss function considering both the rotational
and translational errors in 3.4.
3.1. Optical flow calculation

The essence of the ego-motion estimation is quite different
from other computer vision tasks, which focuses more on geomet-
ric motion between images in the video. To ensure that the pro-
posed framework could learn geometric feature representations,
optical flow calculation from consecutive images is conducted.
The optical flow depicts the pixel movement in the image captured
by the vehicle-mounted camera. In optical flow, the image from
the camera changes over time, and the image can be seen as a func-
tion of time: I tð Þ. Then, for a pixel located at x; yð Þ at time t, its
intensity value (i.e., the grayscale) can be written as I x; y; tð Þ.

The optical flow calculation is based on the assumption of pho-
tometric consistency. That is, the pixel intensity value of the same
spatial point is fixed in each image. For the pixel located at x; yð Þ at
ure, the details in our system are described. Note that an average pooling operation
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time t, supposing that it moves to xþ dx; yþ dyð Þ at time t þ dt, it
has:

I xþ dx; yþ dy; t þ dtð Þ ¼ I x; y; tð Þ: ð1Þ
We can perform the first-order Taylor expansion on the left side

of Eq. (1):

I xþ dx; yþ dy; t þ dtð Þ � I x; y; tð Þ þ @I
@x

dxþ @I
@y

dyþ @I
@t

dt: ð2Þ

Based on the photometric consistency, the grayscale at the next
moment is equal to the previous, thus:

@I
@x

dxþ @I
@y

dyþ @I
@t

dt ¼ 0: ð3Þ

Divide by dt, Eq. (3) is further formulated as:

@I
@x

dx
dt

þ @I
@y

dy
dt

¼ � @I
@t

ð4Þ

where dx
dt and

dy
dt are the moving speed of pixels on the x-axis and y-

axis, respectively, denoted as u;v . @I
@x is the gradient of the image in

the x-axis direction at this point and the other term @I
@y is the gradi-

ent in the y-axis direction, denoted as Ix; Iy, respectively. It is the
change of the image grayscale with respect to time. Eq. (4) can be
written in a matrix:

Ix; Iy
� � u

v

� �
¼ �It : ð5Þ

In order to calculate the pixel motion u;v , the traditional
method is to find the least squares solution by introducing the
Lucas-Kanade (LK) method. In this way, we can get the moving
speed of pixels between images.

However, traditional optical flow algorithms for high-precision
VO are widely applied, while most of them are computationally
intense and cannot meet the real-time requirements of the system.
Considering the performance of the proposed model and the net-
work calculation, we utilize a learning-based optical flow extractor
PWC-Net[41], which is known as a compact but effective CNN
model using simple and well-established principles: pyramidal
processing, wrapping, and the use of a cost volume. Not only does
PWC-Net reduce the model size, but it also improves performance.
We use the Pytorch version of the network framework released by
the original paper[41] to calculate the pixel motion, as shown in
Fig. 2. The process can be described as:

Flot ¼ F it�1; itð Þ ð6Þ
where Flot 2 RC�H�W denotes the optical flow at time t by function
F from two consecutive images it�1 and it . H;W , and C represent
the height, width, and channel of obtained optical flowwhere C ¼ 2.
Fig. 2. Original frames and visualization of optical flow. (a) and (b) are the two
frames in the KITTI Seq 08. (c) and (d) is the corresponding dense optical flow and
sparse optical flow acquired from PWC-Net.
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3.2. Encoder

While many state-of-the-art models (e.g., VGGNet[42], ResNet
[43], and GoogleNet[44]) have yielded remarkable performance
in computer vision tasks, such as image classification, motion
recognition, it is impractical to simply adopt them to the VO task
rooted in the geometry of images. The VO task is on the basics of
geometric constraints between video frames, so the devised neural
network should concern itself with pixel motion characteristics in
optical flow.

For the image sequences captured by the on-board camera, the
pixel movement at the edge of the image is more intense, as shown
in Fig. 2(d), and can be roughly divided into four directions. There-
fore, in the Encoder, four parallel CNNs of the proposed DeepAVO
are responsible for focusing on the pixel motion in different direc-
tions to exploit local visual cues.

To balance the performance and computation complexity of the
model, each quadrant is down-sampled 4 times by using the Global
Average Pooling (GAP) and then fed into a series of CNN filters to
extract motion features. Each branch contains the same core archi-
tecture shown in Fig. 3, and the detailed configuration is outlined
in Table 1. Four parallel core neural networks are trained simulta-
neously as a whole DeepAVO. Two blocks of the core architecture,
to be specific, extract features in different levels: FE1 extracts the
coarser ones and FE2 extracts the finer details. The output of two
blocks are concatenated as the final feature map of the branch:

Xi
t ¼ Vec FEi

1 Floi
t

� �� �
� Vec FEi

2 FEi
1 Floit
� �� �� �

;

i ¼ 1;2;3;4 ð7Þ
where Vec reshapes a 3D feature map into a vector for following

concatenation operation �. Xi
t denotes the feature vector that is

encoded from the optical flow Floit in the corresponding ith quadrant

at time t. FEi
1 and FEi

2 denote two feature extractors of the ith
branch, respectively.

While Four quadrants depict the same motion, the pose estima-
tion can not rely on a single quadrant because the limited motion
information in one quadrant causes the ambiguity between simple
turning and forward movement. Hence, we concatenate four
branches outputs into a feature vector containing the global infor-
mation. The fully connected layers, shown in Fig. 1, give the F2F
pose prediction using features of all four quadrants at the same
resolutions.

3.3. Distilling

In terms of the image processing domain, the attention mecha-
nism is proposed originally by DeepMind (‘‘recurrent models of
Fig. 3. The core architecture of the proposed network. The image is divided into
four quadrants, and each one passes through a chain of feature extractors (FE1; FE2).
To produce more robust visual features, we concatenate the output of FE1 and FE2.



Table 1
Configuration of each branch CNN.

Layer Receptive field size Padding Stride Number of channels

GAP 4 � 4 2 4 2
Conv1 9 � 9 4 2 64
Avgpooling1 4 � 4 2 4 64
Conv2 3 � 3 1 2 20
Avgpooling2 2 � 2 1 2 20

Fig. 5. Implementation of CBAM [45] in the first branch of DeepAVO. (a) and (b) are
the first quadrant of Fig. 14 and Fig. 2(b). (c) is corresponding sub optical flow
calculated from PWC-Net [41], and red boxes indicate the zone where pixel
movement is intense. (d) is differential matrix between features after and before
using CBAM in FE1.
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visual attention”) for image classification [46]. It improves the per-
formance of the model by reducing the dependence on external
information and capturing the internal correlation of data or
features.

The information redundancy of high-dimensional feature
extracted by learning-based methods often leads to the lack of
attention to essential information and the suppression of useless
information. This always leads to unsatisfactory performance on
learning tasks. Based on this problem, this paper introduces an
attention mechanism to solve it. For the VO task, the attention
mechanism enables the model to concentrate on pixels in distinct
motion. Correspondingly, the weight of features in the foreground
and blurred part is decreased. Our approach benefits from effective
feature learning by incorporating an attention module to selec-
tively distill features from the channel and spatial dimensions for
current F2F pose inference.

There are many attention mechanisms, such as CBAM [45],
SENet [47], and Non-local neural networks [48] (Nloc). Among
them, SENet improves the representation ability of the model by
modelling the relationship between channels, that is, assigning
weights to the various channel features extracted by the previous
layer. CBAM that adds the spatial attention mechanism on the
basis of SENet, focuses on essential features and restrains unneces-
sary ones to refine the distribution and processing of information.
Nloc directly integrates global information, bringing richer seman-
tic information to the following layers, but it will increase compu-
tation. The ablation experiments on different attention
mechanisms in Section 4 show that the proposed architecture
combined with CBAM performs better.

CBAM, as a dual attention mechanism, generates the factors to
recalibrate feature map in both the channel domain and spatial
domain, as shown in Fig. 4. This process can be described as two
operations:

M0 ¼ r MLP AP Mð Þð Þ þMLP MP Mð Þð Þð Þ �M ð8Þ

M00 ¼ r f 7�7 AP M0ð Þ;MP M0ð Þ½ �
� �

�M0 ð9Þ

where � denotes element-wise multiplication, r is the sigmoid

function, f 7�7 is a 7� 7 convolutional layer, AP;MP, and MLP mean
average pooling, max pooling, and a dense layer. M 2 RC�H�W is a
feature map. M0 2 RC�H�W and M00 2 RC�H�W are the channel-
refined and spatial-refined feature maps, respectively.
Fig. 4. The overview of CBAM [45]. The mechanism has two sequential sub-modules:
mechanism at each FE block in each branch. r means the sigmoid function, and C deno
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In this paper, the CBAM is implemented after the convolutional
layers in FE1 and FE2. Fig. 5 presents how CBAM guides the VO. We
calculate the difference between distilled feature map and the
original feature map, called the differential matrix, which is visual-
ized in Fig. 5(d). Because activation function (i.e., Sigmoid) in Eq.
(12) and Eq. (13) projects the attention maps into the range of 0
to 1, values of elements in the distilled feature map are smaller
than original ones. Therefore, The zone where elements are closer
to 0 (the brighter color in visualization) is given more attention. It
can be observed that the CBAM focuses more on objects close to
the camera (pixels with obvious motion), such as the stationary
car at the crossroads and the trees on the roadside, corresponding
to the red boxes in Fig. 5(c). This demonstrates the CBAM has the
ability to assist the Encoder in distilling the more effective repre-
sentations from redundant features for pose estimation.

3.4. Loss function

KITTI dataset [49] was collected by a car whose motion model
can be simplified as the motion on a 2-dimensional plane [2].
The Y-axis for elevation is left out because the elevation differences
are at least an order of magnitude smaller than the movement in
the other axes. The dataset provides ground truth odometry infor-
mation as a series of 3� 4 transformation matrices that transform
the first frame of a video sequence into the coordinate system of
the current frame. The transformation matrix is formed by con-
catenating the rotation matrix (i.e., Rt) and the translation vector
(i.e., Tt), which are defined in Eqs. (10) and (11), respectively.

Rt ¼
Rt;1; Rt;2; Rt;3

Rt;4; Rt;5; Rt;6

Rt;7; Rt;8; Rt;9

2
64

3
75 ð10Þ

Tt ¼
Tt;X

Tt;Y

Tt;Z

2
64

3
75 ð11Þ
channel and spatial. The intermediate feature map is adaptively refined using this
tes concatenation operation.



R. Zhu, M. Yang, W. Liu et al. Neurocomputing 467 (2022) 22–35
From this set of data, by decomposing the rotation matrix to
find the difference between angles, the incremental angle change
(i.e., Dut) can be calculated, as shown in Eq. (12). The incremental
distance change (i.e., Dpt) is gained by calculating the Euclidean
distance between the translational parts of the transformation
matrices, as shown in Eq. (13).

Dut ¼ arctan �Rt;3;Rt;1ð Þ � arctan �Rt�1;3;Rt�1;1ð Þ ð12Þ

Dpt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Tt � Tt�1ð Þ2
q

ð13Þ

For each optical flow input, the model regresses an angle and a
distance to represent the displacement and orientation changes of
the camera. This converts global transformation data into an ego-
motion format in which small changes are accumulated over time.

The proposed network architecture based on the DeepAVO sys-
tem can be considered to compute the conditional probability of
the F2F poses Yt , given the optical flow data Flot at time t. To find
the optimal parameters h	 for the model, DeepAVOmaximizes con-
ditional probability:

h	 ¼ arg max
h

p Yt jFlot ; hð Þ ð14Þ

To learn the parameters h, the Euclidean distance between the
ground truth pose pt ;utð Þ at time t and its estimated one bpt; but

	 

is minimized. The loss function is composed of Mean Square Error
(MSE) of the position and orientation:

h	 ¼ arg max
h

1
N

XN
t¼1

kbpt � ptk22 þ ak but �utk22 ð15Þ

where kk2is 2-norm, and N is the number of samples. a is a scale fac-
tor to balance the weights of translations and rotations. The better
performance can be achieved when setting a ¼ 100. Detailed rea-
sons and analysis are presented in Section 4.2.2.

The displacements and angles computed for the optical flow are
independent of the previous or next frame in the video sequence.
However, The evaluation of the model needs to convert the pose
predicted by DeepAVO into the KITTI odometry benchmark format.
The process can be described as:

RjT½ �t ¼
cos utð Þ 0 � sin utð Þ Tt;X

0 1 0 0
sin utð Þ 0 cos utð Þ Tt;Z

2
64

3
75 ð16Þ

where ut , and Tt;X ; Tt;Z are accumulated angle and distance, We
update them as follows:

ut ¼ ut�1 þ Dut�1

Tt;X ¼ Tt�1;X þ Dpt cos utð Þ
Tt;Z ¼ Tt�1;Z þ Dpt sin utð Þ

8><
>: ð17Þ

At the start of every sequence, the camera position is initialized
at the origin of an XZ coordinate system, with X and Z as the 2D
movement plane. Starting from the origin, the next position is
accumulated by applying the angle and displacement to the cur-
rent position, thereby obtaining the absolute pose to origin to plot
the driving path and evaluate the model performance.

4. Experiments

In this section, we first discuss the implementation details of
our framework. Next, we evaluate the proposed DeepAVO by com-
paring it with various state-of-the-art algorithms in different sce-
narios, ranging from outdoor driving car (KITTI benchmark [49],
Malaga dataset [50], ApolloScape dataset [51]) to self-collected
indoor dataset. Finally, since the real-time operation is critical for
robotic applications and learning-based methods are generally
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considered to be computationally expensive, we also discuss the
real-time performance of the DeepAVO.

4.1. Implementation

4.1.1. Dataset
The KITTI dataset contains 22 video sequences captured in

urban and highway environments at a relatively low sample fre-
quency (10 fps) at the driving speed up to 90 km/h. It is very chal-
lenging for the VO monocular task. Sequence 00–10 associate with
the ground truth measured and calibrated by multiple combined
sensors, while the other 10 sequences (Sequence 11–21) are only
provided with raw images. The size of raw images between differ-
ent sequences does not remain the same. For example, the images
of the Sequence 00–02 is 1241�376 pixels, while the Sequence 04–
11 is 1226�370. In our experiments, the size of left RGB images is
unified into 1226�370 for training and testing.

4.1.2. Training and testing
Two sets of experiments are conducted separately to evaluate

the proposed method on the KITTI dataset. The first one is based
on Sequence 00-10 to quantitatively and qualitatively analyze
the model performance using ground truth since ground truth is
only provided for these sequences. We adopt the same train/test
split as DeepVO [34] and ESP-VO [36] by using Sequence 00, 01,
02, 08, 09 for training, which are relatively long. The trajectories
are converted into optical flow data by PWC-Net [41] for training.
Then, the trained model is tested on Sequence 03, 04, 05, 06, 07,
and 10 for evaluation.

Another experiment aims to evaluate the generalization of the
DeepAVO: the ability of a learning-based method to maintain the
performance in totally new environments. Therefore, models
trained on all Sequence 00–10 are tested on Sequence 11–21,
where there is no ground truth to train. In order to further analyze
the generalization of the DeepAVO in the different datasets for a
cross-dataset validation, the Malaga dataset [50], Apollo dataset
[51] and self-collected indoor dataset are used to test the model
trained on Sequence 00–10 of the KITTI dataset.

4.1.3. Network
The network is implemented by the Tensorflow-1.9.0 frame-

work [52] on an NVIDIA Geforce Titan XP GPU. Adam [53] with
b1 ¼ 0:9; b2 ¼ 0:99 is used as the optimizer to train the network
for up to 70 epochs with a batch size of 48. Besides, Batch Normal-
ization and Xavier weight initialization are used to make the net-
work converge faster and better. The initial learning rate is set to
1� 10�4 and reduce by half every 15 epochs. Dropout and early
stopping technologies are introduced to prevent the model from
overfitting.

4.2. Results on KITTI dataset

We compare the DeepAVO with several state-of-the-art VO
algorithms, including the traditional stereo method DSO [18],
monocular ORB-SLAM2-M [5] and the learning-based monocular
models such as ESP-VO [36], NeuralBundler [29], CL-VO [37], DAVO
[38]. Although the direct method DSO is also capable of conducting
ego-motion estimation in a monocular way, it consistently loses
tracking while being tested on the KITTI dataset. To highlight the
efficiency of the attention mechanism, we also consider the DeepA-
VO_Less (i.e., our model without attention) and DeepAVO_SE and
DeepAVO_Nloc using different attentions as the competitive meth-
ods. We follow the error metrics where averaged Root Mean
Square Errors (RMSE) of the translational and rotational errors
are adopted for different lengths of sub-sequences, ranging from
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100, 200 to 800 meters, and different speeds (the range of speeds
varies in different sequences). The detailed performance of the
algorithms on the testing sequences is summarized in Table 2.

4.2.1. Qualitative and quantitative analysis
Traditional monocular VO methods cannot recover the absolute

scale and require pose alignment with ground truth. To achieve a
fair comparison, the ORB-SLAM2-M is modified with its global
loop-closure detection being disabled. Since the ORB-SLAM2-M
does not recover the absolute scale, its keyframe trajectories are
aligned to ground truth by using similarity transformation. Note
that for DeepAVO, the scale learned in end-to-end training is com-
pletely maintained by the model itself without considering any
prior knowledge and pose alignment. This indicates that the
learning-based VO has an appealing advantage over other monoc-
ular VO. Table 2 suggests that our model, even with the vanilla ver-
sion (i.e., DeepAVO_Less), outperforms ORB-SLAM2-M in terms of
the translation estimation, and the attention usage widens this
margin further. We also supplement the high-speed situations in
Table 2
Results on the KITTI dataset.

Method

03 04 05

trel rrel trel rrel trel rrel

Traditional methods
Stereo DSO[18] 6.45 0.16 3.36 0.13 3.03 0.19
ORB-SLAM2-M[5] 1.37 0.22 1.23 0.19 17.46 0.63

Learning-based VOs
ESP-VO[36] 6.72 6.46 6.33 6.08 3.35 4.93
CL-VO[37] 8.12 3.47 7.57 2.61 5.77 2.00
NeuralBundler[29] 4.51 2.82 2:3 0.87 3.91 1.64
DAVO[38] 5.50 2.71 6.03 2.37 2:28 1:14

Proposed methods
DeepAVO_Less 6.56 2.59 3.95 1.40 7.41 3.36
DeepAVO_Nloc 10.55 2.58 4.98 1.18 5.01 1.84
DeepAVO_SE 7.75 2.14 4.52 1.44 3.85 1.66
DeepAVO_CBAM 3:38 1.96 5.70 0.98 3.31 1.36
HighSpeedþ 3.64 1:89 3.88 0:60 2.57 1.16

trel: average translational RMSE drift (%) on length from 100, 200 to 800 m.
rrel: average rotational RMSE drift (�/100 m) on length from 100, 200 to 800 m.
HighSpeedþ means the DeepAVO_CBAM model trained on the original training set an
considering traditional methods.

Fig. 6. The trajectories of ground truth, ORB- SLAM2-M, Stereo DSO, and our model Deep
highlights the vital role of the attention module through the performance of the model
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the training set by adding the subsampled data of Sequence 00 of
which the velocity shows the highest dynamic range, so as to alle-
viate high drifts in such scenarios. The visualization of trajectories
corresponding to the previous testing is illustrated in Fig. 6.
HighSpeedþ outperforms DeepAVO_CBAM and achieves very close
performance to the stereo DSO. For DeepAVO_Less, although
achieving promising performance in regular environments
(Sequence 03), it still suffers from the large scale drift under com-
plicated scenes (Sequence 05, 07, and 10).

Table 2 also compares the proposed DeepAVO series with the
other four learning-based methods. The rotation error of DeepA-
VO_Less is slightly higher than the compared VOs, and the transla-
tion estimation still does not come up to the accuracy of baseline
methods. It reveals that the distinct analysis of pixel motion in dif-
ferent quadrants of optical flow can elevate the performance when
the model estimates the rotation. We assume that extracting
motion-sensitive features directly from the encoded features may
limit the accuracy. Fortunately, this deficiency is compensated by
our proposed architecture that combines the attention mechanism
Sequence

06 07 10 Avg

trel rrel trel rrel trel rrel trel rrel

3.57 0.31 4.25 0.54 2.04 0.20 3.28 0.24
21.02 0.26 12.74 1.43 4.44 0.44 9.71 0.53

7.24 7.29 3.52 5.02 9.77 10.20 6.12 6.15
7.66 1.66 6.79 3.00 8.29 2.94 7.37 2.67
4.6 2.85 3.56 2.39 12.9 3.17 5.30 2.29
4:19 1.69 4.11 2.61 4:26 1:70 4.40 2.04

13.72 5.32 8.47 4.80 12.32 3.99 9.16 3.83
15.00 6.02 11.25 3.52 9.14 3.15 8.14 2.91
8.15 2.58 6.24 4.95 6.58 2.50 5.39 2.26
7.43 2.55 3:31 2.57 6.15 2.67 4.43 1.88
4.96 1:34 3.36 2:15 5.49 2.49 3:52 1:50

d the subsampling data of Sequence 00.The best results are highlighted without

AVO on Sequence 03, 05, 07, and 10 of the KITTI benchmark. Especially, this figure
with and without attention mechanism.
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to distill features, which are conducive to motion estimation. It is
observed that DeepAVO_CBAM outperforms most of the baseline
methods and delivers comparable performance to DAVO [38],
which additionally employs a semantic segmentation module for
weighting semantic categories as well as a dilated pose estimation
module for aggregating them in its architecture. The averaged trel of
DeepAVO_CBAM is slightly (0.68%) higher than that of DAVO. How-
ever, DeepAVO_CBAM delivers a lower (7.84%) averaged rrel than
DAVO. HighSpeedþ, as the best one among the proposed DeepAVO
series, further improves the performance of the proposed model,
especially for sequence 04, 06, and 10 containing many high-
speed samples. Compare with DAVO, the averaged trel and rrel of
HighSpeedþ are 20% and 26.47% lower than those of DAVO,
respectively.

In order to find out the attention mechanism that is preferable
in guiding the VO task, we also discuss the performance of models
with different attention modules. Among these models, SE and
CBAM, unlike Nloc, exploit the correlation and dependence
between features to distill information that is of great value to
ego-motion estimation. The experimental results in Table 2
demonstrate the effectiveness of these two mechanisms for the
VO task. Furthermore, the additional spatial constrain by CBAM,
which preserves the valuable spatial features and suppresses the
useless ones, allows DeepAVO_CBAM to give the best performance
to the DeepAVO framework.

We further evaluate the average RMSE of the estimated transla-
tion and rotation against different path lengths and speeds in Fig. 7.
Fig. 7. Average errors across sequence lengths (a and b) and speeds(c and d)
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As the length of the trajectory increases, the errors of both the
translation and rotation of the DeepAVO_CBAM decrease, far
exceeding other monocular methods, as shown in Fig. 7 and
Fig. 7(b). In term of the comparisons between the monocular
VOs, DeepAVO_CBAM consistently outperforms the other two
competitors (i.e., ESP-VO and CL-VO) regardless of the travelled
length increasing. Nevertheless, the translation estimated by the
DeepAVO_CBAM is slightly defective at high speed (Fig. 7(c)). It
is attributed to the limited high-speed training samples in
Sequence 00, 02, 08, and 09, of which the maximum speeds are
all below 60 km/h. As shown in Fig. 7(c), HighSpeedþ effectively
alleviates the serious translational drifts in high moving speed.
Compared with DeepAVO_CBAM, the averaged trel and rrel of
HighSpeedþ are reduced by 20.54% and 20.21% respectively. Espe-
cially for Sequences 04, 06, and 10, which contain many high-
speed samples, the performance of HighSpeedþ is significantly
improved. By contrast, the rotational error of the DeepAVO_CBAM
shows a downtrend with the increasing speed in Fig. 7(d). We pre-
sume that this is because the KITTI dataset recorded during car
driving tends to go straight at high speeds. Moving forward at high
speed, as a state without an obvious change in rotation, can be
easily learned to model.

4.2.2. The influence of balance parameter a in the Loss function
For the KITTI benchmark, the rotation in the F2F pose is two

orders of magnitude smaller than the displacement. In order to bal-
ance the estimation in translation and rotation better, we test the
on test sequences of the proposed models and competitive approaches.
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influence of balance parameter a in the loss function (3.4) on the
results. Theoretically, the rotational error can be reduced by our
model when given a larger balance parameter to raise the weight
of the rotational portion in the loss function. We compare the
results of the balance parameter set to 10, 50, 100, and 150.

Fig. 8 illustrates the qualitative comparison. When the factor a
is varied between 10 and 150, the performance of our model
remains stable for the trajectories with less intense change in rota-
tion (i.e., Sequences 03 and 10). In terms of the complex scenes
(i.e., Sequences 05 and 07), however, the ego-motion estimation
is sensitive to the factor a. Through a trade-off between the accu-
racy in rotation and translation, we adopt a ¼ 100 as the final set-
ting considering its promising results.
4.2.3. Model generalization ability in the 11–19 sequence of KITTI
Although the generalization of the HighSpeedþ has been evalu-

ated in the previous experiments, in order to investigate further
how it performs in different motion patterns and scenes, the model
is tested on Sequence 11-19 of the KITTI dataset. In this case, the
HighSpeedþ model is trained on Sequence 00–10 and the subsam-
pled Sequence 00, providing more training samples to avoid over-
fitting and maximizing the generalization ability of the network.
Due to the lack of ground truth for these testing sequences, similar
to ESP-VO[36], we use stereo VISO2-S[6] as reference. Note that the
stereo DSO adopted in this paper is released by the Horizon Robotics
since its official version is not available.

The predicted trajectories are illustrated in Fig. 9. VISO2-M suf-
fers from severe error accumulation, while monocular ORB-
SLAM2-M [5](without loop closure detection) partially alleviates
the problem with the assistance of local bundle adjustment and a
global map. Stereo DSO that can perform promising pose estima-
Fig. 8. The trajectories estimated by the models trained und
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tion on most test sequences has good generalization ability. It
can be seen that the results of HighSpeedþ are much better than
VISO2-M’s and roughly similar to the stereo VISO2-S’s. It seems
that this larger training dataset improves the performance of
HighSpeedþ. Considering the stereo characteristics of stereo
VISO2-S, HighSpeedþ, as a monocular VO, has achieved appealing
results, indicating that the trained model has a good generalization
ability in new scenes. We have submitted the reconstructed trajec-
tories on Sequence 11-21 to the odometry benchmark of the KITTI
website for an open and fair comparison with existing methods.

4.3. Results on Malaga and ApolloScape datasets

Malaga urban dataset [50] and ApolloScape dataset [51], similar
to the KITTI dataset, are gathered entirely in urban scenarios by the
sensors mounted on the vehicle. Malaga dataset provides stereo
images captured at 20 Hz along with data from IMU, GPS, etc. Note
that the images of Malaga in the size of 1024� 768 have to be
resized and then cropped to fit the resolution in KITTI. ApolloScape
dataset contains a large number of monocular video clips captured
in different lighting conditions (i.e., morning, noon, and night) for
self-localization. Similar to Malaga dataset, the ApolloScape data-
set is only used to test models.

Compared with the experiments in Section 4.2.3, the verifica-
tion of generalization ability of HighSpeedþ through Malaga and
ApolloScape datasets is more convincing, since 1) it is the cross-
dataset validation under entire new scenarios and hardware plat-
form for data collection; 2) the HighSpeedþ model in this experi-
ment is consistent with the one in Section 4.2.3 of which the
training dataset is only derived from KITTI dataset (i.e., Sequence
00–10 and subsampled Sequence 00) without extra data augmen-
er the balance parameter a set to 10, 50, 100, and 150.



Fig. 9. Trajectories of VO results on the testing Sequence 11–19 of the KITTI VO benchmark (no ground truth is available for these testing sequences). The HighSpeedþ model
used is trained on the whole training dataset (00–10) and subsampled Sequence 00 of the KITTI VO benchmark, Its scales are recovered automatically from the neural network
without alignment to ground truth. The results have been submitted to KITTI website.
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tation or fine-tuning. Figs. 10 and 11 shows the testing results on
the Malaga (Malaga 03, 07, and 09 sequences) and ApolloScape
(Road 11, 12, 14, and 15 sequences) datasets. Sparse GPS ground
truth is available for Malaga sequences, while ApolloScape dataset
provides the ground truth calibrated by multiple combined
sensors.

As for Malaga dataset, we can see that HighSpeedþ outperforms
the ORB-SLAM2-M and learning-based ESP-VO. The pose estimated
by HighSpeedþ is close to VISO2-S’s, both of which approximate the
trajectories reconstructed by GPS, no matter in the regular or com-
plicated scenes. As for ApolloScape dataset, we only compare the
trajectories provided by HighSpeedþ and ground truth as the unu-
sual size of images (3384� 2710) always introduces failed initial-
ization for stereo DSO and ORB-SLAM2-M. As shown in Fig. 11, it
can be observed that the performance of HighSpeedþ is outstanding
in handling various Road sequences except for the last big turn in
Road 15.
4.4. Results on self-collected indoor dataset

We also conduct the experiment based on the self-collected
dataset to evaluate the HighSpeedþ model for indoor positioning.
The monocular RGB images are collected in an office building envi-
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ronment using Intel Realsense D455 camera running on the
Ubuntu system at the sample frequency of 15 Hz with a moving
speed about 2.2 m=s, as shown in Fig. 12. Unlike the previous
experiments, the constructed trajectories by HighSpeedþ cannot
recover the absolute scale for the new indoor data collecting plat-
form. Therefore, its predicted poses are aligned to ground truth by
using similarity transformation.

The reconstructed trails are shown in Fig. 13 along with some
sample images. It can be seen that the dataset is very challenging
for monocular VO because the images are captured under different
lighting conditions, and some of them mostly contain texture-less
white walls in narrow corridors. Nevertheless, HighSpeedþ still
maintains the tracking that suffers from light drifts. We also
attempt to run monocular DSO and ORB-SLAM2-M on this dataset,
but DSO failed to initialize and could not finish localization. Hence,
we only provide the estimated results of ORB-SLAM2-M as the
comparison.

4.5. Computational cost

Since real-time operation is critical for robotics applications
such as autonomous driving, and learning-based methods are gen-
erally considered to be computationally expensive and time-
consuming, we also compare the real-time performance of the



Fig. 10. Testing results on the Malaga dataset without any training or fine-tuning. The HighSpeedþ used is only trained on Sequence 00-10 and the subsampled Sequence 00 of
the KITTI.

Fig. 11. Testing results on the ApolloScape dataset without any training or fine-tuning. The HighSpeedþ used is only trained on Sequence 00–10 and the subsampled sequence
00 of the KITTI.
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Fig. 12. Indoor dataset collecting platform.

Fig. 13. Testing results of HighSpeedþ and sample images in an office building
environment. The two consecutive images around the dot point show the drastic
changes in illumination between frames.

Fig. 14. Time cost distribution of DeepAVO and ESP-VO on CPU and GPU.
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DeepAVO model and ESP-VO. An NVIDIA Geforce Titan XP GPU and
a desktop (Intel(R) Core(TM) i7-8700 CPU@3.20 GHz and 16 GB
RAM) are used to compute the runtime of online inference on
GPU and CPU, respectively.

There are 1000 consecutive frames selected from the KITTI
dataset involved in the time consumption statistics. The histogram
of per-frame runtime in second on both GPU and CPU is shown in
Fig. 14. Note that this time analysis for DeepAVO only involves
odometry calculation. It can be seen that ESP-VO runs at about
20 Frame Per Second (fps) on GPU and 6 fps on CPU, while Dee-
pAVO runs 5 ms to 30 ms per frame on the GPU and 30 ms to
140 ms on the CPU. The average per-frame runtime is about
12 ms and 53 ms on GPU and CPU, respectively. Optical flow calcu-
lation takes 30ms per frame. Therefore, DeepAVO is capable of run-
ning up to 24 fps on GPU and 12 fps on CPU, which is faster than
ESP-VO and far meet the demand for real-time positioning under
the sampling rate of 10 Hz.
5. Conclusion

In this paper, we present a novel framework that contains four
parallel CNNs focusing on four quadrants of optical flow for learn-
ing monocular visual odometry in an end-to-end fashion. In the
framework, we incorporate a helpful attention component called
33
CBAM, which distills the feature extracted by the Encoder in terms
of channel and spatial aspects and ameliorates previous results.
The refined features propagating global information through con-
catenating local cues of four branches further improve the pose
estimation. The extensive experiments based on three datasets col-
lected in outdoor environments by car and an indoor environment
by cart verify that the DeepAVO outperforms many learning-based
and traditional monocular VO methods and gives competitive
results against the classic stereo algorithms, which highlights the
promising generalization ability of the model. Besides, based on
the computational cost analysis, it has been demonstrated that
the DeepAVO can produce accurate and generalized results with
low computational consumption.

In the future, we will focus on developing a complete SLAM sys-
tem utilizing the attention mechanism and introduce sequential
learning to consider the contextual information in the video
sequences for better performance.
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