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ABSTRACT The ubiquity of smartphones and their rich set of on-board sensors have created many exciting
new opportunities, where smartphones are used as powerful computing platforms to sense and analyze
pervasive data. One important application of mobile sensing is activity recognition based on smartphone
inertial sensors, which is a fundamental building block for a variety of scenarios, such as indoor pedestrian
tracking, mobile health care and smart cities. Although many approaches have been proposed to address
the human activity recognition problem, several challenges are still present: (i) people’s motion modes are
very different for different individuals; (ii) there is only very limited amount of training data; (iii) human
activities can be arbitrary and complex, thus handcrafted feature engineering often fails to work; (iv) the
recognition accuracy tends to be limited due to confusing activities. To tackle those challenges, in this paper
we propose a human activity recognition framework based on Convolutional Neural Networks (CNN) with
two convolutional layers using the smartphone-based accelerometer, gyroscope and magnetometer. To solve
the confusion between highly similar activities like going upstairs and walking, this paper presents a novel
ensemble model of CNN to further improve the identification accuracy. Extensive experiments have been
conducted using 235 977 sensory samples from 100 subjects. The results have shown that the classification
accuracy of the proposed model can up to 96.11%, which proves the effectiveness of the proposed model.

INDEX TERMS Convolutional Neural Network; human activity recognition; sensor data; smartphone

I. INTRODUCTION

HUMAN activity recognition (HAR) aiming to identify
the actions carried out by a person given a set of ob-

servations of subject, has attracted much attention from both
academia and industry with widely application requirements
appearing in the indoor pedestrian tracking [1], [2], health-
care [3], and smart cities [4]. Currently, HAR methods can
be mainly summarized as two categories: vision-based and
sensor-based. Vision-based mainly relies on various high-
frame-rate video devices [5], [6]. External factors such as
lighting condition, clothing color, and image background
have a great impact on recognition accuracy. The sensor-
based approach, by contrast, is more robust in complex envi-
ronments, which makes the system convenient and portable.

Also, it can identify confusing human activities with the
mathematical model by directly measuring the motion from
human activities without infringement of personal privacy
[7].

With the advent of miniaturized sensors and powerful
computing resources in smartphones, the concept of effi-
cient and ubiquitous HAR on smartphones is ready to fulfill
soon. Among recent studies focusing on smartphone-based
HAR, most researchers chose waist as the position to carry
smartphones [8], [9]. However, the requirement for rigid
attachment and specified placement is incompatible with the
way in which people use mobile devices. For example, over a
period of a few minutes, a smartphone could be carried in the
backpack and then shifted to a pocket, before being taken out
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and being used to send a text message [10]. This may be one
of the main reasons why it is so hard to conduct HAR using
smartphone sensors.

Existing studies of sensor-based activity recognition often
rely on supervised machine learning approaches such as
Hidden Markov Model (HMM) [11], K-Nearest-Neighbors
(KNN) [12], eXtreme Gradient Boosting (XGBoost) [13],
Random Forest (RF) [14] and Support Vector Machine
(SVM) [15], [16] using motion data collected from various
types and quantities of motion sensors placed in different
parts of body. However, these approaches are limited to three
aspects: Firstly, due to the diversity and complexity of human
activities, handcrafted feature extraction requires experience
and expertise of the field. For the same reason, some extract-
ed features show excellent performance in recognizing some
activities, but rather bad at others [17]. Secondly, even for
the same activity, the waveforms of motion sensors are quite
different in different smartphone placements. This makes it
difficult to recognize various different activities with high
precision. Thirdly, because of the differences in behavioral
habits, gender, and age, the movement patterns of different
people vary greatly, which enhances the difficulty of dividing
the boundaries of different activities. The recognition accu-
racy tends to be limited due to confusing activities which
generate similar motion signals.

Recent years have witnessed fast development and unpar-
alleled performance in many areas (i.e. image recognition
[18], natural language processing [19]) of deep learning.
There is a growing trend of discovering meaningful rep-
resentations of raw data by Convolutional Neural Network
(CNN). It has shown great performance in different domains
for avoiding handcrafted features. Therefore, we present the
ensemble framework based on CNN to recognize human
activities. Without tiring data preprocessing and feature ex-
traction and selection, we put raw data that is partitioned by
the sliding window into our network. By fully mining the
information carried by the signal, it can achieve more accu-
rate recognition on the combination of arbitrary activities and
devices placement.

This paper presents a framework and performance anal-
ysis of smartphone-sensor based HAR. Sensor data from
accelerometer, gyroscope and magnetometer were collected
when participants performed some typical and daily human
activities: going upstairs, going downstairs, running, walk-
ing, standing, bicycling and swinging. We then used the
ensemble of CNN to recognize human activities, especially
those easily confused. The experiments have demonstrated
the improvement on recognition accuracy with the approach
proposed in this paper. In summary, the key contributions of
this paper are:

• A novel approach based on the ensemble of CNN has
been proposed to solve the confusion between highly
similar activities such as going upstairs and walking,
which outperforms the single CNN model and achieves
96.11% accuracy.

• Based on the collected data, we compare our model
with the commonly used classifiers. The fact proves that
the approach proposed in this paper outperforms other
existing models in feasibility and efficiency.

• A huge amount of motion data including 235 977 data
samples from various types of motion sensors and s-
ports scenes with different participants and postures are
collected to validate the effectiveness of the proposed
method.

The remainder of this paper is organized as follows: Sec-
tion II introduces the background and related works. Section
III provides details of the data acquisition and preprocessing
procedure. Section IV describes the CNN-based framework
of the ensemble model and some traditional classification
algorithms. Section V presents our experimental results and
improvements. Section VI concludes the paper and discusses
ideas about future work.

II. BACKGROUND AND RELATED WORKS
HAR can be seen as a classification problem to discover
human physical activity patterns by analyzing motion data.
The input data is the motion signals collected from smart-
phone’s motion sensors and the output is the activity class
label. Fig. 1 shows two typical activity recognition models,
both traditional methods and deep learning model.
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Data Segmentation 

Output Activity Recognition
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FIGURE 1. The human activity recognition system models.

A. TRADITIONAL METHODS FOR HAR
The most generally used traditional algorithms are KNN,
HMM, SVM, RF, XGBoost, etc. These algorithms take three
steps including raw data preprocessing, feature extraction and
feature selection before recognition. In most related works
[20], filtering techniques, like mean filter, low-pass filter,
Gaussian filter and Kalman filter, are used to mitigate the
effect of noise in obtained data. This is due to the fact that
raw sensor data are always noise-corrupted, which makes
it hard to measure and reflect the true motion change of
smartphones accurately. After preprocessing the raw data,
traditional methods extract a large amount of features and
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Going upstairs Going downstairs Standing Running Walking Bicycling Swinging

FIGURE 2. Typical daily human activities.

select some principal features [21] representing the essential
difference between different activities. Features extracted
from the time domain, frequency domain, wavelet energy
and interquartile range are extensively used. PCA or LDA
is widely implemented to select the dominating features. In
addition, normalization of the feature vector can control the
number of features within a certain range.

Many HAR researches [22], [23] place sensors in various
parts of body ignoring the practicability of the solution. S-
martphones which has become daily supplies for most people
have drawn researchers for their plenty of computing power
and multiple sensors. Lee and Cho [24] utilized the tri-axial
accelerometer from a handheld smartphone to identify five
activities with hierarchical hidden Markov models. Motion
data from four participants were collected. The result showed
difficulty in distinguishing upstairs and downstairs move-
ments. Kwapisz et al. [25] collected the acceleration data
of 29 users from smartphones placed in the subjects’ front
trousers pocket. They extracted six features and built up to
four classifiers to achieve an accuracy of over 90% for most
activities. Sun et al. [26] proposed an activity recognition
approach using an accelerometer to recognize seven physi-
cal activities based on six pocket positions. They extracted
features from the collected data of seven subjects, including
time domain and frequency domain features. With the prior
knowledge of known pocket position, the overall F-score can
reach 94.8% of the trained SVM classifier.

B. DEEP LEARNING FOR HAR
The works described above heavily rely on heuristic hand-
crafted feature extraction, which is usually limited by empir-
ical knowledge of the researchers. Furthermore, approaches
using handcrafted features make it very difficult to compare
between different algorithms due to different experimental
grounds and encounter difficulty in discriminating very simi-
lar activities. As a result of those limitations, the performance
of traditional pattern recognition algorithms is very restricted
in terms of classification accuracy and model generalization.
Different from traditional methods, deep learning can greatly
relieve the effort on designing features and easily learns more
meaningful high-level features by training the end-to-end
neural network. Therefore, we reckon that deep learning has
the capacity to do HAR which has been widely proved in the

existing work [27]- [31].
CNN, a deep learning method, has established itself as

a powerful technique because representations learned by
CNNs can efficiently capture local dependency and scale
invariance of a signal. The authors in [29] built an end-to-end
CNN model to predict three arm movements performed in the
daily activity. Motion data was collected from four different
subjects using a wrist-worn tri-axial accelerometer sensor.
The results achieved an average recognition rate up to 99.8%.
Ming Et al. [30] proposed an approach based on CNN to rec-
ognize activities in various application domains. A modified
weight sharing technique, called partial weight sharing, was
proposed and applied to acceleration signals to achieve fur-
ther improvements. The experimental results on three public
datasets: Skoda, Opportunity, Actitracker, indicated that their
novel CNN-based approach can achieve higher accuracy than
existing state-of-the-art methods. Yuqing et al. [31] collected
acceleration data from eight typical activities of 100 subjects
to achieve better performance (an accuracy of 93.8%) than
SVM and Deep Belief Network (DBN).

In this paper, we propose a novel ensemble model based on
CNN which effectively solves the confusion of highly similar
activities such as going upstairs and walking. To evaluate
the performance of the ensemble model, extensive compar-
ative experiments are conducted using traditional methods
including XGBoost and RF. The experiment results show
our approach outperforms traditional methods and achieved
higher accuracy up to 96.11%.

III. DATA ACQUISITION AND PREPROCESSING
Generally speaking, for a multi-class classification problem,
a large amount of training data are required especially with
the presence of a high dimension of the feature vector. In
addition, rich features from a large amount of training data
can effectively prevent overfitting and make the model robust.
The data of this paper come from various sports scenes with
different participants and device placements. The data were
collected in a way to ensure the data amount of each activity
is nearly the same. In this section, we will describe consider-
able details regarding data collection and preprocessing.

A. DATA COLLECTION
Many open source databases focusing on sensor-based activ-
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TABLE 1. Motion sensor features representation.

Attribute Description Feature Identifier
Mean Mean of sample(ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 1∼2
Std Standard deviation of sample(ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 13∼24
Max The maximal value of sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 25∼36
Min The minimal value of sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 37∼48

Max−Min The difference between the maximal value and minimal value of sample 49∼60
Median The median value of sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 61∼72
RMS Root mean square of sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 73∼84
TQ tri-quartileof sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 85∼96
IQR Interquartile range of sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 97∼108
Corr Correlation of (ax, ay), (ax, az), (ay, az), (gx, gy), (gx, gz), (gy, gz), (mx,my), (mx,mz), (my,mz) 109∼117
FFT First 1st ∼ 5st amplitude of FFT of sample (ax, ay, az, gx, gy, gz,mx,my,mz, |a|, |g|, |m|) 118∼178

ity recognition mainly provide a single accelerometer data
collected from the smartphone in participants’ trouser pocket
or on the waist at a low sampling rate. To make things worse,
these data have poor quantity and unbalanced distribution in
various activities, which makes it difficult to construct a high-
ly accurate classification model. To improve this situation, it
is more than necessary to have a large number of participants
contributing to the activity data set.

The experiment data of this paper are collected from ac-
celerometer, gyroscope and magnetometer in ordinary smart-
phones at a sampling rate of 50Hz. A group of 100 partici-
pants ageing from 12 to 51 years was invited to finish the w-
hole experiment. Each participant was asked to complete sev-
en human activities including Going Upstairs (GU), Going
Downstairs (GD), Standing (SD), Running (RU), Walking
(WK), Bicycling (BY) and Swinging (SW) (the smartphone
is possibly periodically shaken or tapped while not moving),
as shown in Fig 2. SW is implemented to detect true pace
accurately while disregarding motion signals such as shaking
or tapping which could be mistaken for walking. We selected
these activities because they are performed regularly by many
people in their daily routines. This study takes into account
four smartphones placement settings:

• Texting: The smartphone is held in front of the user
while the carrier is performing a certain everyday ac-
tivity;

• Handheld: The smartphone is held in a swinging hand
while the carrier is performing a certain everyday activ-
ity;

• Trouser Pocket: The smartphone is put in a trouser
pocket(front) while the carrier is performing a certain
everyday activity;

• Backpack: The smartphone is put in a backpack while
the carrier is performing a certain everyday activity.

In our experiments, the sensor data of each participant
was collected three times for each activity and smartphone
placement setting within the duration of one minute. For
going upstairs and downstairs, a 6-floor building with stairs
was used. Bicycling dataset only contains two smartphone
placements including backpack or trouser pocket. The swing-
ing dataset is collected while the smartphone is handheld. As

a result, the size of these activities is smaller than other five
activities. Table 2 describes the detailed class distribution of
the experiment data.

TABLE 2. Class distribution of data

Activity Distribution
Going Upstairs (GU) 41371 (17.53%)

Going Downstairs (GD) 38497 (16.31%)
Standing (SD) 39467 (16.73%)
Running (RU) 438699 (18.59%)
Walking (WK) 43660 (18.50%)
Bicycling (BY) 20337 (8.62%)
Swinging (SW) 8778 (3.72%)

B. DATA PREPROCESSING
1) Data preprocessing of traditional classifier
Based on the collected data, we compare the performance
of some traditional methods with the proposed model in this
paper. For each sample data, time domain features includ-
ing mean, variance, root mean square, the maximum and
minimum values of the axis, range, interquartile distance,
correlation coefficients and frequency domain feature of
amplitude of FFT are extracted to form a 178-dimensional
feature vector as shown in Table 1.

2) Data preprocessing of deep classifier
In the end-to-end deep architecture proposed in this paper,
there is no need to perform additional processing on the
data and the raw signal is directly used. To meet the format
requirement of the proposed CNN model, a sliding window
segmentation approach with fixed step size of fifty seconds
is applied to each sensor data. In our work, the raw sensor
data stream is cropped into the same size with an overlap of
25%. Every sample is a matrix with the size of 200 (data of
four seconds)×3 (three motion sensors)×3 (X, Y, and Z axis
data) . After simple processing, we have 235 977 labelled
samples.

IV. SYSTEM MODEL
In this section, we firstly introduce our ensemble model based
on CNN. Fig. 3 shows a structure of CNN. Then, we give
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FIGURE 3. Structure of CNN-based human activity recognition model. The numbers of the first and second convolution kernels
are 64 and 32 respectively.

some traditional classifiers a brief illustration.

A. DEEP ARCHITECTURE

The proposed CNN-based model has five kinds of layers: 1)
an input layer, as described in Section III; 2) convolutional
layers extract features from input data; 3) max-pooling layers
reduce the size of extracted features and enhance the robust-
ness of some detected features; 4) fully connected layers
integrate all features extracted; 5) an output layer of the
softmax function represents a categorical distribution over
seven different activities.

1) Convolutional Layer

CNN is different from other neural networks in terms of
sparse connectivity between units of adjacent layers and pa-
rameter sharing in the same layer. For example, in Fig. 4, the
units in the middle layer are only connected to a local subset
of units in the input layer. CNN uses local filters in input
space for feature extraction, which perform inner product
operation of local filters and use the output result as the value
of the corresponding dimension of the convolutional output
matrix.

Input layer

Convolutional layer

Pooling layer

FIGURE 4. Key part of CNN.

Suppose we have a N -units layer as the input followed
by convolutional layer. If we use an m-size filter, the output
will be (N − m + 1) units. The detailed calculation of
convolutional layer l is as follows:

xl,ji = f(Σm
a=1w

j
ax

l−1,j
i+a−1 + bj), (1)

where xl,ji is the output of jth feature map on the ith
unit of the convolutional layer l. wj

a is the convolutional
kernel matrix and bj is the bias of convolutional feature
maps. Weights are convoluted with previous layer output
feature map before summed with the bias. Then the nonlinear
mapping is performed through the activation function f . Our
model uses the reluctant function relu(·). Take Fig. 4 as an

example, the first hidden unit of the first local filter is:

x1,11 = relu(w1
1x

0,1
1 + w1

2x
0,1
2 + w1

3x
0,1
3 + b1) (2)

2) Max-Pooling Layer
This research uses max-pooling strategy to address the ac-
tivity recognition problem. Once features have been detect-
ed in the convolutional layer, max-pooling layers, without
breaking the internal relationship of data, reduce the size of
extracted features and make some features more robust. The
activation function in the max-pooling layer in CNN is given
by:

xl,ji = maxri,j=1(xi,j), (3)

where xl,ji represents a local output after the pooling process,
and r is the size of pooling kernel.

In the max-poling layer, features extracted in the convo-
lutional layer are split into several partitions. The maximum
values are given as the output of each partition. The input data
size of the first max-pooling layer is (200, 3, 64), and the
output data size is (100, 3, 64). After the last max-pooling,
the data size obtained is (50, 3, 32), indicating that both the
data dimension and network parameters have been greatly
reduced.

B. ENSEMBLE MODEL

CNN-7

WK or GU ?

CNN-2
Weighted 

Voting

Prediction

Test Data

Ensemble

Y

N
CNN-7

CNN-2

Baseline

Training Data

FIGURE 5. The ensemble of CNN for human activity recogni-
tion.

In this section we propose a novel framework based on
the ensemble of CNN to tackle the confusion in human ac-
tivity recognition, which greatly improves the robustness of
existed models. In our training procedure, there are two CNN
models called seven-class network (CNN-7) and two-class
network (CNN-2). In our test procedure, two CNN models
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perform weighted voting to recognize human activities. It
shows that the ensemble learning approach is fairly efficient
to distinguish the confusion between certain highly similar
and thus confusing activities like going upstairs and walking.
The detailed process is described in Algorithm 1 below.

Algorithm 1The framework of Ensemble of CNN

Input:
Testing data:XMaxSample

i=1

Output:
Human activity (GU, GD, RU, WK, SD, BY or SW)

1: for i to MaxSample do
2: CNN-7 network gives the predicted activity
3: if activity is GU or WK then
4: Normalize the probability of GU and WK P 1

u , P
1
w

5: The CNN-2 network gives another prediction
P 2
u , P

2
w

6: Define weights:α =
P 1

u

P 1
u+P 2

u
, β =

P 1
w

P 1
w+P 2

w

7: if activity is GU then
8: Pu = β × P 1

u + (1− β)× P 2
u

Pw = β × P 1
w + (1− β)× P 2

w

9: else
10: Pu = α× P 1

u + (1− α)× P 2
u

Pw = α× P 1
w + (1− α)× P 2

w

11: end if
12: return The predicted activity from max(Pu, Pw)
13: else
14: return The predicted activity from CNN-7
15: end if
16: end for

In our ensemble learning framework, CNN-7 is used to
identify seven activities and CNN-2 is designed to distinguish
two confusing human activities which generate highly similar
signal patterns: going upstairs and walking. If the output
of CNN-7 is neither going upstairs nor walking, this output
would serve as the final decision. But if the output of CNN-7
is going upstairs or walking, we will combine the prediction
of CNN-2 to improve the recognition accuracy of these two
confusing activities.

C. TRADITIONAL CLASSIFICATION ALGORITHM
1) XGBoost
XGBoost [32] is one of the boosting algorithms, which can
promote weak learners to evolve into strong learners. It adds
a regularization term to the loss function to control the
complexity of the tree compared to the traditional model.
XGBoost that comprises multiple classifications and regres-
sion trees selects the best classification point according to
certain strategies. Disposing the sparse data and adding par-
allel processing as an optimization method makes XGBoost
efficient and robust.

2) Random Forest
Random Forest [33] adopts the idea of the ensemble learning
and integrates decisions from multiple trees. Running effi-

ciency on large databases and ability to handle thousands of
input variables without variable deletion are the two principal
superiority of random forest, compared with other traditional
methods. A random forest consisting of N decision trees
will produce N classification results for an input sample,
because each of the N decision trees in the random forest is
a separate classifier. Using the simple Bagging idea, random
forest specifies the category with the most votes from all the
classification voting results as the final output.

V. EXPERIMENTAL RESULTS AND EVALUATION
In this section, we will evaluate the recognition performance
of the proposed method through extensive real-world ex-
periments. We first introduce the allocation of training and
test dataset before we compare and analyze the recognition
accuracy of different classifiers. The impacts of smartphone
placements and activity types on recognition accuracy are
then evaluated. In the last part, we verify the performance
of the novel approach we proposed to improve CNN with the
ensemble model.

A. TRAINING AND TESTING PROCEDURE
To evaluate the recognition performance, we divide all col-
lected data samples into training dataset and testing dataset.
To make a widely applicable model, we use an individual-
based 10-fold evaluation approach where all data samples
from 10 random participants out of the 100 participants are
selected as the test data and the rest training data. This
method takes into account the applicability of the recognition
framework for testing data from individuals totally different
from the training data and thus examine whether the general-
ized model can be applied to real world scenarios.

B. CLASSIFICATION ACCURACY
We compared our method with three frequently used method-
s. Extensive experiments have been conducted and the results
show that the classification accuracy of the ensemble model
outperforms other models up to 96.11%, which proves the
feasibility and effectiveness of the proposed approach in this
paper. To analyze the results in more details, we compare the
performance of each classifier in different smartphone place-
ment settings of different subjects. To reduce the impact of
data imbalance, we calculate the F-score of each activity and
finally use average F-score as the criterion. The performance
of each classifier is shown in Fig 6.

Ensemble 96.11%
CNN 95.06%

XGBoost 91.36%
RF 89.97%

96.11%

95.06%

91.36%

89.97%

75.00% 80.00% 85.00% 90.00% 95.00% 100.00%

CNN-7    

Ensemble

XGBoost

RF

F-score
FIGURE 6. Classification results on various classifiers.
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1) Activity Recognition under various placements
The motion patterns of the mobile phone are very different
for different smartphone placements [34], [35]. As a result,
the sensor signals can be very different accordingly. For
example, smartphones in the backpack are usually looser and
deeper than those in trouser pockets. This usually leads to a
higher vibration magnitude while walking or running. More-
over, different parts of the body show different patterns. For
example, a smartphone placed in the trouser pocket records
how the thigh moves while a handheld smartphone records
how the arm swings. To investigate the effects of varying
sensor placements on activity recognition, we calculate the
F-score of each classifier under four different placement
settings: (i) texting mode; (ii) handheld mode; (iii) trouser
pocket mode; and (iv) backpack mode, as shown in in Fig. 7.
Table 3-6 provides the detailed classification results of each
individual. "M" means no position information and a mix of
four positions data together.

85
88
91
94
97

100

Ensemble CNN-7 XGBoost RF

F-
sc

or
e(

%
)

HX HH TP BP

FIGURE 7. F-score of different classifiers for various place-
ment settings. Legend represents the placement settings:
"TX"- texting mode,"HH"- handheld mode,"TP"- trouser pock-
et mode,"BP"- backpack mode.

TABLE 3. Ensemble Model (%)

TX HS TP BP M
Test1 96.14 98.38 99.18 94.07 97.03
Test2 86.34 94.28 99.46 94.79 94.27
Test3 98.00 96.04 98.98 95.96 97.21
Test4 98.16 83.07 100 99.71 95.26
Test5 99.23 100 99.23 98.10 97.64
Test6 99.70 77.95 99.59 99.09 94.70
Test7 96.58 94.54 96.09 91.00 94.63
Test8 97.96 95.36 97.50 98.48 97.41
Test9 97.02 89.86 99.28 95.61 95.26

Test10 95.58 97.47 98.95 90.21 95.39

It can be observed that the recognition performances of
different smartphone placements can vary significantly. For
instance, the placement of trouser pocket can be easily rec-
ognized and therefore achieves the best recognition accuracy
and robustness for each classifier. In comparison, handheld
placement is hard to deal with and has the lowest recognition
accuracy. The underlying reason lies in the fact that the
movements of thighs are quite restricted and thus easy to
be identified while the movements of hands can be quite
complex and difficult to be identified. Experiment results

TABLE 4. Convolutional Neural Network-7 (%)

TX HS TP BP M
Test1 96.14 98.85 98.53 92.83 96.69
Test2 88.06 97.40 98.98 97.00 94.41
Test3 98.99 95.25 99.73 90.60 97.47
Test4 98.29 73.27 99.89 97.90 92.59
Test5 99.85 100 99.85 99.79 98.10
Test6 98.80 78.35 99.59 99.31 94.64
Test7 95.87 89.67 99.75 93.41 94.80
Test8 89.90 89.93 95.78 98.58 95.44
Test9 97.02 91.03 98.65 92.67 91.87
Test10 96.10 91.56 98.76 82.71 94.89

TABLE 5. eXtreme Gradient Boosting (%)

TX HS TP BP M
Test1 87.58 87.53 96.10 95.90 91.70
Test2 56.85 86.93 78.36 94.48 84.62
Test3 90.63 94.01 97.98 87.34 92.70
Test4 92.48 86.74 97.78 91.02 92.34
Test5 89.08 86.87 93.65 88.18 90.63
Test6 93.32 92.44 96.91 96.83 95.34
Test7 90.67 82.89 98.27 92.01 91.22
Test8 95.55 87.83 89.74 80.82 91.72
Test9 85.88 78.45 81.10 91.26 84.53
Test10 95.68 95.16 97.39 89.88 95.71

TABLE 6. Random Forests (%)

TX HS TP BP M
Test1 82.67 82.44 95.28 92.71 87.93
Test2 62.88 84.34 79.45 88.30 83.39
Test3 90.51 93.86 95.72 90.83 93.23
Test4 91.24 88.93 94.50 92.28 91.86
Test5 89.75 90.71 93.32 87.08 90.54
Test6 92.28 83.40 82.68 97.09 89.14
Test7 90.65 80.06 95.74 85.20 88.23
Test8 87.72 84.27 92.11 91.13 89.07
Test9 81.09 78.29 80.85 83.90 81.27
Test10 85.21 91.54 85.37 84.87 86.76

have shown that deep learning based model significantly
outperforms the traditional algorithms in any smartphone
placement.

2) Activity Recognition under various activities
There are numerous and complex human activities, which
makes the boundaries of different activities blurry. Even for
the same activity, different individuals have very different
motion modes. Fig. 8 evaluates the performance of different
classifiers for each activity.

From Fig. 8, we can infer that all classifiers can achieve
an F-score above 95% in standing, running, bicycling and
swinging. Note that even if there are a very limited number
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FIGURE 8. F-score of different classifiers for various activities.

TABLE 7. Ensemble Model (%)

GU DU SD RU WK BY SW
Test1 99.28 95.61 98.20 99.08 92.94 96.38 100
Test2 82.89 99.43 99.77 100 90.24 99.29 100
Test3 96.42 98.56 97.24 100 97.58 95.12 95.43
Test4 86.34 98.96 99.93 100 85.23 99.86 99.67
Test5 95.74 98.31 100 100 96.27 99.88 100
Test6 80.18 98.99 100 100 85.42 99.40 99.69
Test7 93.05 96.59 96.88 100 92.13 93.01 99.36
Test8 92.06 98.13 99.59 99.71 94.11 99.13 99.68
Test9 90.29 98.32 97.76 99.49 88.99 98.29 99.71

Test10 93.24 97.01 97.11 99.41 90.98 90.54 99.68

TABLE 8. Convolutional Neural Network-7 (%)

GU DU SD RU WK BY SW
Test1 97.31 95.61 98.20 99.08 91.71 96.38 100
Test2 80.13 99.43 99.77 100 87.80 99.29 100
Test3 95.69 98.56 97.24 100 96.93 95.12 95.43
Test4 81.39 98.96 99.93 100 76.95 99.86 99.67
Test5 95.04 98.31 100 100 95.65 99.88 100
Test6 79.77 98.99 100 100 85.35 99.40 99.69
Test7 88.47 96.59 96.88 100 89.12 93.01 99.36
Test8 86.82 98.13 99.59 99.71 89.89 99.13 99.68
Test9 89.28 98.32 97.76 99.49 87.79 98.29 99.71

Test10 83.56 97.01 97.11 99.41 80.96 90.54 99.68

TABLE 9. eXtreme Gradient Boosting (%)

GU DU SD RU WK BY SW
Test1 90.84 89.61 98.83 95.35 83.03 92.63 89.13
Test2 65.77 91.79 100 89.68 66.76 98.61 96.91
Test3 78.83 95.14 96.90 99.45 89.54 89.29 99.73
Test4 87.28 86.81 100 96.64 84.92 99.17 98.69
Test5 83.99 68.47 99.84 99.61 82.38 99.76 99.08
Test6 81.77 94.90 99.85 99.50 91.97 99.70 99.69
Test7 69.42 95.33 99.21 99.36 78.70 97.91 100
Test8 79.87 92.32 99.84 96.80 85.02 97.30 99.37
Test9 67.39 81.76 97.89 97.72 67.90 98.14 98.84

Test10 87.69 95.68 99.77 98.01 92.20 99.00 100

of examples of bicycling and swinging, we can still identify
these activities quite well. Nevertheless, the performance
of distinguishing between going upstairs and walking is
quite unsatisfactory, especially for the traditional classifier.
Deep learning algorithm achieves the best prediction accu-
racy among all models, slightly above 97% excluding the
recognition of going upstairs and walking. To tackle the
confusion of these two activities, we further propose a CNN

TABLE 10. Random Forests (%)

GU DU SD RU WK BY SW
Test1 81.59 88.59 98.83 97.03 70.62 86.82 92.81
Test2 63.19 85.87 99.92 94.35 61.36 99.72 99.66
Test3 82.58 94.29 95.56 99.52 91.23 85.98 98.61
Test4 86.30 87.85 99.86 96.55 83.26 97.44 98.69
Test5 82.90 73.23 99.69 99.41 81.40 99.52 99.70
Test6 65.68 91.39 99.54 99.43 71.88 99.10 99.39
Test7 68.33 90.31 98.05 98.45 72.68 94.43 100
Test8 75.68 84.24 99.59 96.20 83.90 95.21 99.37
Test9 62.63 75.69 98.10 98.00 58.97 98.29 99.71

Test10 71.61 87.14 99.77 94.13 68.27 99.00 99.68

with ensemble model. Table 7-10 shows a further relation be-
tween recognition accuracy and individuals in detail. We can
find that recognition accuracy may be drastically different
between different individuals even under the same activity
and algorithm. Therefore, the increase of data from different
individuals could improve human activity recognition accu-
racy.

3) Performance of Ensemble model
The task is to distinguish between two confusing activities:
going upstairs and walking which bring the major prediction
errors known from confusion matrices. The CNN-7 in Fig. 9
indicates that going upstairs is usually misclassified to walk-
ing, which leads to a 7.27% decrease in prediction accuracy.
Similarly, walking is misclassified as going upstairs, leading
to a further 12.84% decrease in prediction accuracy. To re-
duce the confusion between these two activities, we propose
an ensemble model based on CNN which can achieve up
to 96.11% accuracy. The confusion matrix of the model is
shown in Fig. 10. We can see that the prediction accuracy
has been improved significantly, even if going upstairs and
walking are still the two most confusing activities.
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FIGURE 9. The normalized confusion matrix of CNN-7.
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VI. CONCLUSION
This paper has proposed a CNN-based human activity recog-
nition model using the nine-axis motion signals of ac-
celerometer, gyroscope and magnetometer in common smart-
phones. We have compared and analyzed the performance
of different algorithms with seven daily activities and four
different placements of smartphones. In order to further
improve the recognition accuracy, this paper has developed
an ensemble model based on CNN which extracts the local
dependence and scale invariant characteristics of the sensor
time series and reached an accuracy up to 96.11%. In the
future, to verify the robustness and practicality of the model,
we will conduct further experiments with larger datasets to
recognize more human activities under more placements of
smartphones.
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