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Abstract—Deployment-independent indoor localization meth-
ods, such as inertial tracking and vision-based tracking have been
popular for years for they require no extra infrastructure cost.
However, most systems require accurate initial positions from
either the users or other external signals, making it difficult to
meet on-demand localization requirements. To solve this issue,
in this paper we propose a novel and special map matching
system which matches the topology of the floor plan to the
spatial structure extracted from the image of the environment
taken by the camera of the mobile phone. The proposed system
utilizes Convolution Neural Networks (CNN) to extract the spatial
structure from images and Siamese Network for spatial structure
matching. Extensive experiments have been conducted in three
different buildings to demonstrate that our system can provide
accurate positions without extra infrastructures and manual
initial positions.

Index Terms—Indoor Localization, map-matching, CNN, data
fusion

I. INTRODUCTION

Map-based indoor localization that reconciles the obser-
vations with the constraints provided by the maps in order
to estimate the most trajectory, has drawn much attention in
both civilian and military fields during the last decade [1]–[4].
Unlike outdoor localization, it cannot adopt the Global Naviga-
tion Satellite System (GNSS) owing to poor penetration. From
the perspective of the pre-deployment hardware, indoor local-
ization methods can be divided into two types: deployment-
dependent and deployment-independent positioning [5], [6]. A
disadvantage to all deployment-dependent positioning methods
is the tediousness and delicacy of the deployment process.
In a typical deployment processes, a trainer should perform
a careful survey of the environment [7], [8]. This includes
going to a certain locations, collecting the value of some type
of signals and repeating this for probably a large number of
points whose locations are known by accurate measurements.
This implies several hours or even days of data collection
for radio-map of buildings. Most deployment-dependent algo-
rithms need to update databases or maintain equipments [9]–
[11]. This requires a lot of manpower and material investment.
additionally, deployment-dependent positioning will fail in
specific scenarios where the facility cannot be deployed in
advance [12]. Therefore, this work focuses on map-based
deployment-independent indoor positioning.

As the key to providing accuracy indoor location, the map
can be viewed as a geometric information providing spatial
constraints. A floor plan of a building calibrates the movement
of a user. For example, people can only enter the room through
the door, not through the wall. However, most existing map

matching methods rely on the external information of prior
site survey or initial positions provided by users [13], [14],
which makes it challenging to meet on-demand localization
requirements. Researchers have investigated the possibility
of reducing reliance for initial positions. [15] modelled the
architectural plan as a topological graph and then realized
the indoor topology matching, proving the effectiveness of
topology matching. [16] adopted visual information of map
landmark to achieve map matching by leveraging machine
learning methods. However, we cannot ignore the fact that
maps with landmarks will bring extra limitation to positioning
[17]–[19]. [20] and [21] using building structure make it pos-
sible to achieve indoor localization through easily accessible
information.

Inspired by the state-of-the-art researches, we explore a
novel strategy for performing deployment-independent indoor
positioning in this work. Here, we adopt easily accessible
information such as floor plan and simple real-time images
captured by smartphones to realize the user positioning by
utilizing object recognition, video feature matching [22], and
topological graphic matching all based on deep learning. In
particular, topological graphic matching is based on the three-
dimensional structure recovered from the floor plan and the
spatial information directly extracted from the environmental
picture.The goal of our proposed system is to complete indoor
pedestrian positioning with similar accuracy as existing tech-
niques. Unlike exiting techniques, our system does not require
initial positions information, which is more in line with the
actual use conditions of pedestrians.

We propose a system that uses target recognition and the
Siamese Network for map matching.Our system requires floor
plan,Inertial Navigation System data and video data as in-
put.Among them, INS data is processed by topology matching
to obtain the candidate trajectories.Candidate trajectories will
be processed by cursory selecting and intensive selecting using
video data, and finally the output trajectory will be obtained. In
summary, the main contributions of this paper are as follows:

• On-demand positioning system without initial constraint:
We design an indoor positioning system only utilizing
map, Inertial Navigation System (INS) and videos to
provide ON-DEMAND positioning service. Neither prior
site survey nor initial positions from external information
is needed.

• Novel matching method guiding pedestrian positioning:
A novel method based on architectural perspective theory
is designed to recover three-dimensional structure from
floor plan. Besides, a Siamese Network has been em-



ployed to match the recovered three-dimensional struc-
ture with spatial information extracted from smartphone
cameras.

• Extensive experiments validation: The proposed system
demonstrates its performance in terms of tracking accu-
racy and robustness with a huge number of real-world
experiment data in three different experiment scenarios.

The remainder of this paper is organized as follows:Section
II reviews some related works, and Section III describes the
proposed architecture in detail. The experimental results and
analysis are performed in Section IV. Finally, we conclude the
paper in Section V.

II. RELATED WORKS

This paper focuses on deployment-independent indoor posi-
tioning technology. Researchers have proposed many effective
approaches to solve this problem. In this section, we discuss
various algorithms and their differences from others. Here, we
mainly focus on the characteristics of building spatial structure
and indoor localization.

A. The Characteristics of Building Spatial Structure

Most indoor scenes satisfy the Manhattan world Assumption
where most planar directions belong to one of the three
orthogonal directions. Under this assumption, there are many
related studies on perspective line-drawing in architectural
space. Guzman [23] focusing on segment graphs divided the
sets of line drawings into parts of different objects. Huffman
[24] and Clowes [25] proposed the standardized methods for
defining concave, convex, and occlusive surfaces in perspec-
tive, allowing us to restore the three-dimensional description
of objects from perspective line drawings. Many researches on
perspective line maps based on Manhattanworld Assumption
have been done by Kosecka et al. [26]. Kosecka and Wei [27]
developed a perspective restoration method for the rectangular
structure based on the vanishing point concept. On the other
side, there are many state-of-the-art methods focusing on the
relationship between an image and its corresponding three-
dimensional structure. David et al. [20] focuses on vein, edge
segmentation line, and position of the image. They used the
three-dimensional structure of indoor image to restore the
vertical and horizontal directions of each areas of the image
to obtain a simple 3D model. Y. Li and S. T. Birchfield [21]
completed an indoor floors segmentation scheme based on a
single image without calibrating the camera. These methods
imply that it is feasible to use architectural constrains to assist
map matching.

B. Indoor Localization

Indoor positioning methods have been studied for decades,
and many excellent approaches have been proposed. Gu
Fuqiang [1] proposed a new indoor positioning scheme to
improve the positioning accuracy. The emerging deep learn-
ing, a data-driven approach, has widely used in improving,
reconstructing or innovating indoor positioning technology.
Simon T [28] introduced an approach of indoor localization

based on confidence interval fuzzy model by using fingerprint
maps based on Bluetooth signals to improve the perfor-
mance of the traditional K-nearest neighbor indoor localiza-
tion method. Yuan Y [29] that adopted AdaBoost integrated
learning method, perform multi-sensor data fusion to achieve
an average accuracy of 1.39m with lower computational over-
head.There are also many researches on data fusion positioning
based on video information. Specifically, these methods rely
on landmark information to achieve indoor positioning. Extra
prior information based on designed landmarks can be used
as a guidance of the location on real maps to assist the
accurate positioning. [30] compares landmarks with image tags
restored in the database by using the Scale-Invariant Feature
Transform (SIFT) feature. [31] introduces a geometric local-
ization method by leveraging indoor objects such as doors,
elevators, cabinets, and characters of landmarks. [16] proposes
a learning-based landmark recognition system by detecting
continuous landmark sequences and using Markov Model
to infer the trajectory of users. However, the performance
of these landmark-based methods is severely limited by the
environment.

In the field of deployment-independent indoor localization,
the following three methods have their own characteristics
and provide some ideas for our system. We will introduce
their advantages and disadvantages in detail. The main content
includes the specific conditions, costs and positioning perfor-
mance of each method. 1) [MapCraft] [14]MapCraft is a robust
and responsive technology. The response is less than 10ms on
the Android platform. Even in the case of a large amount of
noisy sensor data, it can have a good tracking and positioning
effect. The advantage of the MapCraft system is that it has
good positioning accuracy, supports almost all indoor scenes,
and does not need to be trained again in advance. It has the
characteristics of simple use and wide application scenarios.
The system uses conditional random field technology (good
application in natural language processing). In the system
verification experiment, the RMS error is 1.14m-1.83m, and
the 97th quantile is 2.37-4.53m. In terms of use conditions,
the system only needs to pre-process the floor plan, provide
the initial point of pedestrian walking, and locate the scene to
support entering and leaving the room. However, we believe
that it is difficult for pedestrians to provide an initial point
in positioning. Imagine a pedestrian enters a building that
has never been visited before. Since multiple points in the
map are similar, pedestrians want to confirm their current
location through the surrounding environment as the initial
point of walking which is very difficult. In the light of this
actual problem, it reflects the advantage of this system-indoor
positioning does not need to provide an initial point of walk-
ing. 2) [VLSIL] [16] VLSIL provides an indoor topological
positioning method based on mobile phone video. The system
uses highly abstract landmark information to indicate location.
The VLSIL system does not need to be retrained in a similar
environment. The system analyzes the sequence of images
in the video, uses CNN classification technology (specifically
using AlexNet) to match the landmarks on each route on the



map, and selects the route with the most certain number of
matches to select the final trajectory. The landmarks used in
the experiment include fire extinguishers, stairs, door frames,
elevators, toilet signs, etc., mainly single-object landmarks. In
the experiment, 7 paths are set as candidate paths, and each
path includes different road signs. The experimental results
and analysis show that in a trajectory route, an average of
9 road signs can be observed to determine the trajectory.
The VLSIL system also supports map matching without the
need for initial point conditions, but it is costly in terms of
positioning conditions, such as the need to mark landmarks on
the map and set possible paths, which is difficult to complete
in actual positioning as it requires advance site research and
mark the detailed location of landmarks on the map, such
as fire extinguishers, signboards, stairs, etc. For this type
of landmarks, they cannot be automatically marked on the
map by automated procedures, and a large number of manual
marking operations are required, indicating that the system
is costly and has low versatility. Through the comparison of
conditions, it shows that our system has the advantage of not
needing to investigate in advance, not using object landmarks
but using scene landmarks (including door frames, building
convex corners, building concave corners, etc.). The difference
is that the former requires on-site investigation. The latter
can be detected using automated procedures. Furthermore,
because we use inertial navigation information, we can locate
the specific location of the pedestrian by using the specific
features of the inertial navigation trajectory after cursory
selection and intensive selection, rather than just screening
the pedestrian’s walking route. 3) [PF-net] [32] The article
applies Particle Filter Network (PF-net) to the visual posi-
tioning of robots, and proposes a network architecture that
matches 3D real scene images with 2D maps. Experiments
on the simulation data set of the House3D data set show
that it is effective in matching environments with furniture
and other obstructions. It evaluates the tracking effect on
820 trajectories of 47 untrained buildings, and the RMSE is
40.5 cm under the condition of using RGB cameras. PF-net
can match the photos taken and the plane map in the room
with obstacles, which is a huge advantage of this network,
but it is difficult to complete in the real environment-it uses
45,000 trajectories from 200 buildings (virtual environment)
for training. The images in the virtual environment are all
clear and the background environment is not very different.
We believe that such experiments are difficult to carry out
in a real environment for two reasons: one is that the cost
is very high, it is difficult to collect a large number from
200 buildings in a real environment, and it requires a one-
to-one trajectory corresponding to the truth value, and the
other is that the real situation is not considered the impact
of image noise on training, the image background in real pic-
tures may have inconsistencies in lighting, blurry photos, and
inconsistent photo quality, making the network effect worse or
even difficult to converge. In these aspects, the advantages of
our system are demonstrated through comparison-using real
image training instead of virtual building environment, and

image processing methods such as histogram equalization and
Gaussian blurring are used to reduce the noise impact of
real images at different times and architectural backgrounds.
On the other hand, due to the limited number of images
collected in the real environment, we cannot directly match
the screenshot fragments of the flat map with the real image,
so this system innovatively converts the two-dimensional map
into a simulated three-dimensional image. Using the deep
learning matching method to match it with the real image, we
believe that this can reduce the number of images required for
training, and pre-processing in advance will help the network
converge quickly.

III. MODEL

The system framework designed in this paper is shown
in Fig. 1. The system is divided into three parts: data pre-
processing, cursory selection, and intensive selection. The
data preprocessing includes extraction and modeling of map
topology models, inertial navigation trajectory generation. The
cursory selection includes the feature vector conversion of
pedestrian trajectory, matching with the map topology model.
The intensive selection part includes door frame recognition
and matching, building space structure matching. We use an
example to illustrate the detailed steps: pedestrians use mobile
phones to shoot video data and wear inertial measurement
unit(IMU). When pedestrians enter the building, system loads
the preprocessed map model of the building. Pedestrians walk
a certain distance to generate an inertial navigation trajectory.
The system uses the reconstructed trajectory to match the
trajectory in the map topology model obtaining the candidate
trails. Perform sampling processing on the video data taken
by pedestrians, recognize the door frame of the image in the
video to form a feature vector. At the same time, conduct
door frame analysis on the candidate trajectory in the floor
plan to match the feature vector with the previously obtained
feature vector to further remove the mismatched trajectory.
Image processing is conducted on the video image, and the
part of floor plan corresponding to the discrete points of
the candidate trajectory is converted into a simulated three-
dimensional structure image, the obtained image is matched
with the processed real video image. The output trajectory
and corresponding location are finally obtained according to
the degree of matching.

A. Preprocessing and cursory selection

Floor plan preprocessing
The floor plan used by this system is a two-dimensional

flat map, and the map information does not contain semantic
information (no need to manually mark door frames, corners,
landmarks, etc.). The advantage of doing so is that there is
no need to investigate the building in advance, thereby saving
costs. In other words, it is feasible and convenient to use this
system in new buildings. The preprocessing process of the
building map includes extracting the pedestrian passage part
of the map, marking the topological points according to the



Fig. 1. System architecture

TABLE I
SPECIFICATIONS OF NGIMU.

Accelerometer Gyroscope Magnetometer
Dynamic Range ±16g ±4000πrad/h ±1300µT

Accuracy 490µg 1.2πrad/h 0.3µT
Dynamic Range 400Hz 400Hz 20Hz

distance of each half step (0.3m) of the pedestrians and con-
verting them into a mathematical topological model, as shown
in Fig. 12(a), 12(b), and 12(c).The storage relationship of topo-
logical points is [(x0, y0) − > [(x1, y1) . . . (xn, yn)]], n =
1, 2, 3 · · · ] where x0, y0 represent the coordinates of the topo-
logical point in the x direction and y direction on the map,
the unit is pixel, xn and yn are the topological points closest
to x0 and y0 in each direction.

Trajectory generation
The IMU used in this system is the Next Generation Intertial

measurement unit (NGIMU) produced by X-IO Technologies,
which includes a three-axis gyroscope, a three-axis accelerom-
eter and a magnetometer. In the experiment, the NGIMU is
mounted on the foot. The module specifications are shown in
the TABLEI.The sampling frequency of the inertial sensor is
set 400 Hz. Because the general motion of the pedestrian will
not be too intense, and does not involve high-speed rotation
and vibration, so the NGIMU meets the calculation needs of
this article.

When pedestrians walking, the IMU on the foot changes
its posture continuously with the movement of the foot. The
posture matrix of the strapdown inertial navigation system is

Cn
b (t) = Cn

b (t−∆t) · 2I + [Ωt]×∆t

2I − [Ωt]×∆t
(1)

where [Ωt] =

 0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 represents the

skew-symmetric matrix of the gyroscope at time t, wx, wy, wz

three-axis gyroscope readings, ∆t = 1/400 is the sampling
time interval, and I is the unit matrix.

After getting the updated attitude matrix, we can get the
system navigation acceleration:

an(t) = Cn
b (t) · ab(t)− [0, 0, g]T (2)

where gravity is g = [0, 0,−9.81]. This system uses the inertial
measurement unit, and the sampling frequency is 400 Hz.
Therefore, it can be assumed that the acceleration and velocity
from t − ∆t to t are constant. Take the average value from
t − ∆t to t to get the velocity vector and position vector at
this time:

v(t) = v(t−∆t) + an(t) ·∆t (3)

p(t) = p(t−∆t) + [v(t−∆t) + v(t)] ·∆t/2. (4)

With the zero-veocity detection algorithm based on a fixed
threshold, ZUPT utilizing error-state Kalman filter (ESKF) can
be used to correct and calibrate this. This is not the focus of
this article, and will not be expanded. This system processes
the inertial navigation data of pedestrians to obtain the inertial
navigation trajectory. We need to further process the trajectory
and match it with the known map topology information to
obtain a cursory selected trajectory.

Trajectory feature vector conversion and matching
After the pedestrian inertial navigation trajectory is obtained

by the above method, the system converts the trajectory into
a feature vector

V = {L
′
, ..., dn, Ln, ..., dN , LN} (5)

where N represents the total number of pedestrians turns in
the real trajectory; dn is the nth turn, this article takes 10
to the right and -10 to the left; Ln represents the cumulative



distance of the nth turn from the starting point of the trajectory;
L

′
represents the total length of the trajectory.

Performing point traversal on the spatial topological model
generated by the map, several paths with length L

′
are gener-

ated, which are converted to the above feature vectors. The
Euclidean distance between feature vector of reconstructed
trail V and selected trails V

′
is

d = ‖V − V
′
‖. (6)

Trajectory whose vector Euclidean distance is less than the
threshold (the threshold is 10 in this paper) is used as the
candidate trajectory, which is the output result of cursory
selection. The results obtained in this section are used as input
for the subsequent intensive selection. Part B will explain the
specific process and methods of intensive selection in detail.

B. Intensive selection

Video processing and analysis
The system needs to match the real information contained in

the video with the map information contained in the candidate
path obtained in the previous step, and output the correct track
to get the pedestrian location. First, the video needs to be
sampled appropriately according to cursory selection of the
topological trajectory, so that the real image and the topolog-
ical point of the trajectory can be one-to-one correspondence.
A low sampling rate will result in the loss of rich door frame
information and building spatial structure information, and a
too high sampling rate will cause duplication of information,
such as repeated door frame recognition, etc. The distance of
the topological points in the map is approximately equal to half
the pedestrian step length, which is the appropriate interval in
sampling. It is obtained that the number of topological points
contained in each candidate track is N, and the total length of
video recording is T, then the video sampling rate is f = N/T .
The sampled image sequence is used as input for subsequent
analysis.

Door frame detection and matching
There are two reasons why this system relies on door frame

detection. One is that the door frame can be detected by the
pixel detection algorithm in the two-dimensional map, which
helps to reduce the cost. There is no need to investigate the
site in advance when we use the system in a new building.
The second is that the current target detection algorithms used
are mature, especially the YOLO algorithm based on deep
learning, which helps us get more accurate information from
real images.

The YOLOv3 [33] algorithm used in this paper improves
the effect of feature extraction by adding residual network
structures to achieve a deeper network main frame. On the
COCO data set, using mAP-50 and single image detection
time as evaluation indicators, YOLOv3 has state-of-the-art
performance. In the case of similar detection speed, the
accuracy of YOLOv3 is improved by at least 10%, and in
the case of accuracy, the detection speed of YOLOv3 is 3-4
times that of models such as RetinaNet-101. We use YOLOv3

Fig. 2. Door frame detection from the floor plan

to detect the sequence images obtained by video sampling,
and obtain the door frame information vectors on the left and
right sides of the pedestrian walking.

Vr/l = (L0, L1, ..., Ln) (7)

where r/l represents the left and right sides, and Li represents
the cumulative distance of the ith door frame from the initial
point of the track.

For the floor plan analysis part, as shown in Fig. 2, we
analyze the door frame information of the two-dimensional
map by analyzing the pixels, and also get the door frame
information vector. Calculate the Euclidean distance between
the vectors and remove the candidate trajectories that exceed
the threshold. At this time, the output result of the first step
of the system’s intensive selection is obtained.

Spatial structure matching
1) Image processing: Due to the influence of the light

intensity of the scene, the video taken by pedestrians has
strong noise directly on the edge of the image, which is not
conducive to subsequent matching. We do image processing
with histogram equalization and Gaussian blur before edge ex-
traction. The difference between whether or not to preprocess
is shown in Fig. 3(a), 3(b), and 3(c).The processed image has
less noise, and the image display is closer to the real spatial
structure information of the scene, which is also conducive to
matching in the subsequent steps.

In the edge extraction part, the system uses the Canny edge
detection algorithm, which mainly includes two steps, sup-
pressing noise and determining the edge position, as follows:

(1) First, use a Gaussian filter to convolution filter the
input image to reduce the influence of noise on the gradient
calculation. Because the gradient amplitude near the noise
pixel is large, the edge detection operator is easy to misdetect
the noise pixel as an edge pixel. The Gaussian filter is as
follows:



(a) Original picture (b) Edge detection directly (c) Edge detection after image pre-processing

Fig. 3. Image processing with histogram equalization and Gaussian blur before edge extraction.

G(x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(8)

(2) Using the first-order difference operator to calculate the
gradient amplitude components in the horizontal and vertical
directions, so as to obtain the gradient amplitude M and the
gradient direction θ of the image:

M =
√
G2

x +G2
y (9)

θ = arctan (Gy/Gx) (10)

(3) Non-maximum suppression: traverse each pixel on the
gradient amplitude image M[i, j], and interpolate the gradient
amplitude of two adjacent pixels in the gradient direction of
the current pixel. If the gradient amplitude of the current pixel
is greater than or equal to these two values, the current pixel
is a possible edge point, otherwise the pixel point is a non-
edge pixel, and the edge of the image is refined into a pixel
width, and the gradient magnitude image M [i, j] is processed
to obtain the image NMS [i, j] by non-maximum suppression.

(4) Double threshold detection and edge connection: The
Canny edge detection method uses high threshold Th and low
threshold Tl to extract edges, traverses the image NMS [i, j],
and uses high threshold and low threshold for thresholding to
obtain edge images E1 and E2 and E1 are strong edge points,
there may be discontinuities, and E2 is weak edge point. Track
the edge in E1. When the edge reaches the end point, search for
edge points in the neighborhood of the corresponding position
of the image E2 to connect the discontinuity in the strong edge
E1, and constantly search and track the edge to connect the
discontinuity in the edge of the high threshold image E1.

2) Generate simulated three-dimensional images from the
floor plan: Further, we need to convert the floor plan infor-
mation around the topological point into a simulated three-
dimensional image. The purpose is to match the structural
information contained in the map with the real information ob-
tained by edge detection. As shown in Fig.4, when processing,

Fig. 4. Getting converted 3d picture from floor plan.

Algorithm 1 Feature extraction of spatial structure.
1: Input partially map of the front passage of point P;
2: for all pixels in that map do
3: Take the next pixel in the direction of motion as the

initial point, and calculate whether there are pixels on
both sides of the initial point and record the state: Sw;

4: According to the current Sw and the previous state, the
structure of the left and right sides is judged as wall,
concave angle, convex angle and empty, and the result
is stored in Ll or Lr;

5: end for
6: According to the Ll and Lr, Draw analog images based

on perspective theory;
7: end

we use the current topological point as the observation point,
the movement direction as the observation direction, and use
the architectural perspective principle to generate a simulated
three-dimensional image. The specific algorithm is shown in
Algorithm 1. There are two reasons why we do not use the
original two-dimensional map image for matching. One is
that the original two-dimensional image contains information
outside the pedestrian’s field of view, such as information
within the room, which is one of the interference factors



Fig. 5. The model of Siamese Network

for our matching. Second, the background difference between
the two-dimensional map and the real edge extraction map
is too large. If deep learning matching is used, an extremely
large amount of data is required for training. The paper [32]
uses a two-dimensional map to match the real environment,
but the experiment is in a virtual software environment.
Pedestrian images are simulated images generated by software
and require a huge amount of data.

3) Siamese network: The spatial structure of buildings
around specific topological points on the map can be re-
garded as unique landmarks. The image obtained through the
previous steps contains spatial structural features (concave
corners, convex corners of buildings, etc.). This system uses
the Siamese network to match the real image obtained after the
edge detection and the generated simulated three-dimensional
image.

As shown in Fig. 5, the Siamese Network consists of 16
convolutional layers with a parametric rectified linear unit
(PReLU) activation following each layer, 8 pooling layers,
and 6 fully connected layers. Input images are in the size

of 630 × 600 × 1, and dropout is adopted to avoid over-
fitting considering the small-scale of our dataset. Note that two
branches of the neural network are trained separately which
means parameters of two subnetworks are not shared. The
output of each branch represents the feature vector comprising
high-dimension features. The similarity between two feature
vectors is measured according to the loss function [34]

L =
1

2N

N∑
i=0

(
yid

2
i + (1− yi) max (M − di, 0)

2
)

(11)

where N indicates the batchsize, yi indicates the label of
the sample, and di is the Euclidean distance between two
feature vectors. In this paper, we consider the loss L below
the threshold M = 10 as the acceptable pair of trajectories.

As the result, the features of images which fit the matching
rules get closer and closer in the feature space as training
proceeds. On the contrary, the features of images which do
not fit the matching rules get farther and farther. We use
Euclidean distance to reflect the similarity of feature vectors.
With the training positive data, the Euclidean distance between
two groups of vectors would reduce; however, the Euclidean
distance would increase with the negative data. In this study,
the parameters of two subnetworks are not shared, and they
are trained and used separately. The reason is that our input
data is the matching group of real images and simulated
feature images. The two have different backgrounds and scene
information. Therefore, independent parameters are suitable
for this condition.

4) Trajectory matching: In order to determine the final
path from the candidates, we use the well trained Siamese
Network to output the matching degree of the architectural
structure image obtained from the video and the simulated
three-dimensional structure picture obtained from the map.
The matching probability Pk of each candidate path and the
truth value of the trajectory is obtained by

Pk =

(
N∑
i=1

pi

)
/N (12)

where pi is the class matching result at ith step, N means
total steps of the real trajectory. The candidate path with
maximum probability is taken as the final matching path, and
its endpoint is the current location of the user.

IV. EVALUATION

Sites and participants
In order to verify the positioning performance of this

system in new buildings without training, we selected three
buildings in the experiment. The experimental buildings are all
reinforced concrete structures, namely the laboratory building,
office building, and administrative building.The specific condi-
tions of the experimental site including the area,etc., are shown
in the table II.We build a topological model of the building as
shown in Fig.12(a), 12(b), and 12(c).



TABLE II
EXPERIMENTS SITES.

Laboratory building Office Administrative building
Area(m2) 6756 3601 2829

The planned route length(m) 261 142 154
Number of door frames 80 37 32

The horizontal spacing of passages(m) 3 2.7 -

There are three participants employed to collect data with
foot-mounted IMU and hand-held mobile phones to shoot
video during walking. The mobile phones including iPhone
X, iPhone Xr and iPhone 6s Plus. Pedestrians try to ensure
that the camera shooting range is directly in front, to facilitate
better collection of building door frame information and spatial
structure information.

In this experiment, information of 468 trajectories with
the average length of 50m were collected, including the
raw IMU data, and corresponding video information. During
the experiment, pedestrians try their best to walk along the
topological route, and the experiment does not record the true
position they passed during the walking process. In order to
mark the true start point and endpoint of each trajectory, we
recorded the true position by analyzing videos and maps.

Network training
The neural networks used in our system include the

YOLOv3 model used to identify the door frame and the
Siamese Network model used to match the processed real
image with the simulated generated image. This paper uses
the existed YOLOv3 model and adds 140 pedestrian-view door
frame pictures. On the validation set, the recognition accuracy
is 95.5%, which meets the requirements of the system for door
frame recognition.

The Siamese Network model is the core framework in our
positioning system. It is implemented in TensorFlow, and an
NVIDIA TITAN XP GPU is used for training. Image data of
the train set is collected from 4 buildings which are different
sites from validation set and following test experiments. The
image data includes the processed real image data of the
pedestrian perspective and the simulated three-dimensional
image conversion map in the field of view of the two-
dimensional map where the topological point is located. Our
training data set has a total of 16.1k pairs of pictures, and
the ratio of positive samples to negative samples is 1:3. In the
validation set, we constructed 1.0k pairs of pictures. The test
set consists of 672 pictures, and the real pictures tested are
partly taken from pictures taken in different environments and
time periods.

During the training of the Siamese Network, the batchsize
is set to 32, the learning rate is set to 0.001, and the training
loss function curve changes as shown in Fig. 6(a). When the
training round reaches 25000, the loss is 0.603. The F1 value
of the Siamese Network on the test set is 76.63%, and the ROC
curve and PR diagram are shown in Fig. 6(b) and 6(c). The
neural network has not achieved high-performance in the test

set. The reasons are: 1) The matching images have different
backgrounds, and the shooting of real images will be affected
by lighting, angles, random obstacles, etc. 2) The interference
lines extracted from billboards and windows in the shot images
can not be automatically analyzed from floor plan without
manual labeling. 3) There are not enough buildings used in
training, and the train set is relatively small.

In terms of time consumption, the time consumption of
each group of images is 0.255s when the Siamese Net-
work in this article matches the Intel Core i7-8700 CPU
and 3.20GHz environment. As shown in Fig.7, we compare
the parameter amount and time complexity of the Siamese
Network with well-known networks, including ResNet (RES-
50), GoogleNet, AlexNet, and SqueezeNet. The results show
that the complexity of the Siamese Network in this paper is
equivalent to that of GoogleNet.

Distance required for positioning
The main purpose of our system design is to quickly obtain

positioning without an initial point. We select three points A,
B, and C in the building shown in Fig. 8, and walk 60m in
the direction shown in the Fig. , and we count each point how
long is needed to get the correct positioning. We start from
each starting point 20 times, and the result is shown in Fig. 9.
The abscissa is the distance in which the model calculates the
correct positioning, and the ordinate is the number of times
obtained by statistics. Take the point A to the direction in Fig.
9 as an example. In this experiment, the correct positioning
was obtained at the 42 meters for 7 times. The results show
that the distance required for positioning at points A, B, and
C are 42m, 19m, and 25m, respectively. The median required
distance are 41.5m, 18.5m, and 24m, respectively. It indicates
that the distances required to obtain positioning from different
starting points are different. Our analysis believes that the
distance required from each point is related to the particularity
of the path in the map. If the door frame information and
building space structure information of a path have multiple
similar results in the map, as the system cannot accurately
determine the final matching location, then definite location
can not be obtained at this time. As shown in Fig. 10, the
selected two area A and B are very similar in the detected
door frame and the structure information analysed through
the video. This is the difficulty encountered in obtaining
positioning using this system. Therefore, we believe that when
the trajectory is special in the map, such as the unique
topological matching result and the unique spatial structure
information contained in the corner, the positioning can be
obtained more easily.

Positioning performance
The goal of this experiment is to verify that the system has

a good positioning performance in buildings with rich door
frame information and building spatial structure information.
Without prior knowledge of initial location, our algorithm has
the capacity for accurate positioning relying on floor plan,
inertial data, and shot images which are not required to be
taken in advance for Siamese Network training, and only
the preprocessing of topology modeling of the floor plan is



(a) Loss curve (b) ROC curve (c) PR curve

Fig. 6. Loss curve,ROC curve and PR curve.

Fig. 7. FLOPs and Parameters

TABLE III
EXPERIMENT RESULTS IN THREE SITES.

Laboratory building Office Administrative building
RMS error(m) 1.81 1.43 1.20

85 percentile(m) 2.73 2.30 2.07
Choosing the right path(%) 91.4% 95.0% 96.3%

Number of door frames 80 37 32
The length of corridor 261 142 154

required. The system inputs the collected inertial navigation
trajectory and pedestrian image sequence as data input. The
inertial navigation trajectory is obtained by processing the
original inertial navigation data by a zero-speed update al-
gorithm. The image sequence is obtained from processing
the original video data by sampling, histogram equalization,
Gaussian blur and edge detection mentioned above.

In this experiment, the positioning success rate is defined
as the correct candidate trajectory output by the system, that
is, a trajectory whose starting point and ending point are
closest to the pedestrian’s actual walking is selected among

Fig. 8. Experiment–distance required for positioning from A,B and C.

multiple candidate trajectories. As shown in TABLE III, the
results of this experiment show that the positioning success
rate is above 91.4%, indicating that the system can be applied
to buildings with rich door frame information, rich building
spatial structure information, and no site investigation in
advance. The positioning RMS error, the 85th quantile of
error, the positioning success rate, the number of door frames,
and the length of corridor in the experimental building are
shown in the table. The cumulative distribution function of
the experimental positioning errors in the three buildings is
shown in Fig. 11. It can be seen from the Fig. that the best
positioning performance among the three different types of
buildings is the administrative building. From the analysis on
the map, this building floor plan is not a centrally symmetric
structure. The similarity of each candidate trajectory is low,
and the system matching difficulty is low. In the real map
matching experiment, because the door frame information and
spatial structure information around some trajectories to be
selected are very similar, the trajectory selection is wrong and
cannot be matched correctly.

As shown in Fig.12(d)12(e)12(f),we show the positioning



Fig. 9. The distance required to obtain the location from point A,B and C.

Fig. 10. The characteristics of area A and area B are similar.

performance of starting from a certain position in three
buildings. Since this system solves indoor positioning under
the condition of unknown initial point, we do not input the
starting position into the system as known data during the
experiment. Participants in the experiment walk along the path,
and the experiment intercepts the trajectory and video data
for map matching. When the input data can output accurate
positioning, the end point of the trajectory data is used as
the acquired location. Theoretically speaking, the walking
distance required to complete the positioning is related to the
actual starting point of the pedestrian, whether the building
space structure information of each location on the map is
similar, and whether the door frame interval in the trajectory
is similar. The experimental results show that the more special
the building map, the richer the information contained in the
video, and the less information about the similarity of the door
frame and the spatial structure, the easier it is to complete the

Fig. 11. Error CDFs in three sites.

positioning during short-distance walking.
Discussion
Through the above experiments result and comparison with

other indoor positioning systems, we have analyzed the advan-
tages of our system: 1) No need to provide initial points for
pedestrians; 2) Low cost, no need to manually mark landmarks
on the map and advance on-site investigation of buildings;
3) The Siamese Network in the system uses real video data
as input and has strong versatility; 4) Converting a flat two-
dimensional map into a simulated three-dimensional image
(Algorithm 1)is a new method of acquiring map information,
using less data and faster convergence. On the other hand, in
the actual use of the system, we also analyzed the limitations
of the system. 1) It is currently more suitable for buildings
with compact passages as shown in Fig.12(a)12(b), and we
are also experimenting in the buildings shown in Fig. 12(c).
This kind of building is characterized by large open space and
unpredictable pedestrian walking space. The walking path is
specified in our experiment. However, in actual positioning,
pedestrians may walk in an open area, and it is difficult to
collect information such as road signs and building space
structure through video. 2) Currently, pedestrians entering the
room and walking outside of the set topology area are not
supported. The system is designed to be able to walk in
the corridor to obtain rapid positioning. 3) Since there is no
limitation of the initial point, when there are more trajectories
to be selected in the path matching, it will increase the amount
of calculation. This situation has an impact especially on maps
with many building passages and large building areas. Through
the above analysis, we believe that this system is suitable
for obtaining the position of pedestrians through short-term
positioning. This position can be used as the initial point
of a general positioning method, such as the initial point
of methods such as [14] [15].Through such a combination,
the general indoor positioning method using map and inertial



(a) Topological pattern of Laboratory build-
ing

(b) Topological pattern of Office) (c) Topological pattern of Administrative build-
ing)

(d) Getting outputted location in 28.8 meters
at Laboratory building.

(e) Getting outputted location in 24.2 meters at Office. (f) Getting outputted location in 24.5 meters at
Administrative building.

Fig. 12. Experiments in three different sites without training.

navigation information can solve the problem that the initial
point is required, and retain the advantages of these methods
of high accuracy, rapid response, and strong versatility.

V. CONCLUSION

In conclusion, the focus of this paper is to achieve the
purpose of indoor localization by using easily available in-
formation under the condition that the initial position of users
cannot be provided. We have designed an indoor map matching
system based on the INS trajectory and video information.
This system does not require any other data training. Many
experiments show that our system has favorable generalization
ability. The positioning system designed in this paper does
not require the initial position and has the characteristics of
accurate positioning and high efficiency. In the future, we will
focus on using more visual information to assist positioning
and improve positioning accuracy and efficiency.
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