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Abstract—Monocular visual odometry (VO) is one of the most
practical ways in vehicle autonomous positioning, through which
a vehicle can automatically locate itself in a completely unknown
environment. Although some existing VO algorithms have proved
the superiority, they usually need another precise adjustment
to operate well when using a different camera or in different
environments. The existing VO methods based on deep learning
require few manual calibration, but most of them occupy a
tremendous amount of computing resources and cannot realize
real-time VO. We propose a highly real-time VO system based on
the optical flow and DenseNet structure accompanied with the
inertial measurement unit (IMU). It cascade the optical flow
network and DenseNet structure to calculate the translation
and rotation, using the calculated information and IMU for
construction and self-correction of the map. We have verified
its computational complexity and performance on the KITTI
dataset. The experiments have shown that the proposed system
only requires less than 50% computation power than the main
stream deep learning VO. It can also achieve 30% higher
translation accuracy as well.

Index Terms—image sequences, visual odometry, neural net-
work, IMU

I. INTRODUCTION

In the development of unmanned vehicles and intelligent
robots, it is important for vehicles and robots to autonomously
locate and build real-time maps in an unknown environment.
As an autonomous positioning solution, visual odometry can
provide the required pose information for unmanned vehicles
and intelligent robots in an unknown environment. This paper
proposes an inertial assisted visual odometry scheme based
on deep learning.

In traditional SLAM algorithm, some existing algorithms
such as ORB-SLAM2 [1] have achieved relatively high preci-
sion. However, these methods rely on optimization and loop
closure detection techniques that the vehicle or robot has to
reach the passed location on the map to correct the current
pose and eliminate accumulated errors. For systems that only
consider frame-to-frame estimation, these methods can not
work well. There is also a type of VO methods called optical
flow method, such as VISO2 [2], which is a high-precision
method for estimating the motion of a carrier on the basis
of the dense optical flow of two frames. But the optical flow
method has a heavy computing burden, it is difficult to apply
to scenes that require real-time performance. Peter M. Muller
[3] proposed an VO method based on optical flow generated
from Flownet. Experiments show that this method has higher

real-time performance than the existing optical flow based VO
systems. However,it is hard to meet the demand of real-time
processing.

LightVO proposed in this research uses the TVNet proposed
by Lijie Fan [4], which is an optical flow extraction algorithm
based on convolutional neural network. It uses neural network
to realize the TV-L1 [5] optical flow extraction algorithm. It
has faster running speed than FlownteS. At the same time, we
select the Densenet [6] structure and make a modification for
pose estimation, which achieves a great reduction of parameter
amount and running time. The translation accuracy is even
better than Flowdometry [3]. Neural network can learn the
characteristics of translation better [7], but a deficiency in the
estimation of rotation. In this case, we propose the use of IMU
information to correct the VO results. Experiments show that
our algorithm has better real-time performance and increases
the accuracy of translation estimation.

The proposed method is more than twice as fast as Flow-
dometry. Our VO solution takes 47ms and Flowdometry takes
103ms in the case of a single Titan XP GPU acceleration.
When concerning to accuracy, our VO scheme achieved a
translation error of 7.49% on the KITTI dataset [8] and Flow-
dometry of 10.77%. Our rotation error is slightly more, but
the additional IMU corrected program, with few computing
resources(0.16ms on 3.20GHz CPU), fixes the flaw and our
rotation get good results. Another advantage of our system is
that it requires very low data processing rates. Compared with
the mainstream visual inertial schemes such as [9], [10], our
scheme greatly reduces the data processing rates. In summary,
this paper’s main contributions are:

• Lightweight visual odometry: The proposed Network
enables computational efficiency and real-time frame-to-
frame pose estimate.

• A higher precision translation estimate: We achieve the
precision of translation estimate about 30% higher than
other real-time method.

• Lightweight IMU correction: We implement an inertial
correction scheme with very low computational cost in
our frame-to-frame pose estimate.

The remainder of this paper is organized as follows: Sec. II
overviews existing techniques. Sec. III introduces our frame-
to-frame pose estimate systems. Sec. IV extensively evaluates
our visual odometry method and compares it with existing
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Fig. 1. The architecture of LightVO system

techniques. Sec. V concludes the paper and discusses ideas
for future work.

II. RELATED WORK

The present schemes can be divided into three categories:
sparse feature based methods, optical flow based methods
(direct methods), and deep learning based methods.

A. Sparse Feature based Methods

The VO based on sparse feature method is the current
mainstream method [11]. This method extracts the feature
points of the image, then performs feature point matching,
and uses the matched feature point pairs combined with the
camera internal parameters to estimate the pose transformation
between the two frames. ORB-SLAM2 [1] is an example
of this method. The VO system using the feature method
is insensitive to light and image noise, and the operation is
relatively stable, but the more it enhances the robustness, the
more complex the feature point description and the algorithm
is. In addition, its application is limited by the scene and is
not suitable for application in scenes with missing features.

B. Direct Methods

The direct method based on the assumption of pixel gray
invariance for estimating camera motion has developed rapidly
in the past few years [12], [13]. Direct method developed
from optical flow [14], which can estimate camera motion
by minimizing photometric error without mentioning fea-
tures from pixel information. The problems faced by the
feature point method can be effectively solved. Large-scale
direct monocular Simultaneous Location and Mapping (LSD-
SLAM) algorithm proposed by Engel et al. [15] is the method
employed, it uses a new depth estimation mechanism called
sliding window optimization instead of the original Kalman
Filter method used by DSO [13] (Direct Sparse Odometry).
The direct method can be applied to scenarios that require
the construction of semi-dense or dense maps, which is not
possible to extract feature points. However, the direct method
also has problems such as non-convexity, single pixel no dis-
crimination, and farfetched gray-scale invariance hypothesis.
It is only suitable for situations where the motion is small and
the overall brightness of the image does not change much.

In order to solve the problem of lacking depth information
of monocular VO, the researchers use the idea of combining
monocular camera and inertial navigation to achieve better re-
sults. The current mainstream fusion schemes have a filtering-
based approach and a nonlinear optimization-based approach.
OKVIS [9] is an example of the former and VINS-Mono
[10] is the latter. These schemes have high requirements on
calculation frequency and real-time performance. Once there
is a problem in calculation time, the stability of the system
will be greatly reduced.

C. Deep Learning based Methods

The neural network method has been applied to many
fields recently, VO field is no exception, and has satisfactory
achievement. Konda et al. [16] first implement DL-based
VO by extracting visual motion and depth information. The
change in camera speeds and direction are predicted by the
softmax function using a convolutional neural network (CNN).
Kendall [17] use CNN to implement an end-to-end positioning
system with RGB image as the input and camera pose as the
output. Costante et al. [18] replace the RGB image with a
dense optical stream as the input to the CNN. The system
designs three different CNN architectures for VO feature
learning, which realizes the robustness of the algorithm under
the conditions of image blur and underexposure.

In recent years, many excellent VO algorithms based on
deep learning are proposed. Wang et al. [19] propose a
new end-to-end monocular VIO framework based on RCNN
using deep recursive convolutional neural networks. Their
experiment on KITTI VO dataset shows that the performance
of their algorithm is comparable to the most advanced visual-
inertial odometry (VIO) methods available today. GeoNet [20]
divides the stationary object from the moving object, thus a
new cascade structure consisting of two stages is designed
to adaptively solve the rigid flow and object motion of the
scene. Using unstructured video sequences as input, Xu et
al. [21] propose an unsupervised learning framework for
monocular depth and camera motion estimation. This method
is completely unsupervised and requires only monocular video
sequences for training.

Muller [3] puts forward a VO method based on optical flow
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and depth learning. It extracts optical flow as the input of CNN
to calculate the rotation and translation and obtain the estimat-
ed result of VO. Experiments show that this method has higher
real-time performance than the existing VO system. However,
these solutions do not guarantee real-time performance due to
the large amount of time required to extract the optical stream
or the enormous network, even with a GPU for acceleration.

Benefiting from the research of Lijie Fan [4] and Gao
Huang [7], we propose a new solution based on optical flow
and deep learning method to solve the real-time problem of
visual odometry.

III. SYSTEM ARCHITECTURE

Our algorithm is an inertial-assisted visual odometry system
based on deep learning that involves four steps: 1) preprocess
two images using TVNet to calculate optical flow; 2) obtain
the frame-to-frame pose estimation using optical flow as the
input of the frame-to-frame estimation network; 3) generate
the motion map from the cumulative estimation; 4) correct the
map to make up the VO deficiency using the IMU information.
The system is shown in Fig. 1.

1×1 conv

3×3 conv

4×k chanle

k chanle· 

1×1 conv

3×3 conv

4×k chanle

k chanle

 M+k chanle     

 M+k×(L-1) chanle     

M+k×L chanle     

Concatenation

bottleneck layers

 M chanle     

Concatenation · 

Fig. 2. The architecture of Dense Block

A. Optical Flow Calculation

Traditional optical flow algorithms for high-precision VO
are in widespread used, while they can not satisfy VO real-
time requirement for relying heavily on computing resources.
Recently, the Flownet 2.0 [22] which uses the neural network
to calculate optical flow has greatly improved the arithmetic
speed, but it is still unfeasible for generic camera sampling
frequency. Moreover, it is difficult to cascade the Flownet
2.0 and our network into a system to estimate translation
and rotation. According to the paper [4], we find that TVNet
performs well in controlling the quantity of parameters and
calculation. Above all, we can assemble an end-to-end system
by cascading TVNet with our network.

B. Network Structure

We take much superiority over DenseNet into consideration,
for instance, enhanced feature propagation, sufficient feature

reuse, minor parameter quantity. Therefore, we adopt Dense
connection to solve VO problems.

As shown in Fig. 1 which is our network structure, optical
flow inputs a 7×7 convolution layer firstly for its large
receptive field and an average pooling layer is adjacent to
reduce the data size.

Then data will be processed through four dense blocks
and three transition layers alternately. We give a detailed
description of the dense block in Fig. 2 to indicate that the
bottleneck layer is the smallest unit in our block. We design
bottleneck layers in each dense block in the way shown in
Table I. Every bottleneck layer contains two convolutional
layers in sizes of 1×1 and 3×3 respectively. Note that 1×1
kernel can effectively reduce the data dimension to 4K which
makes our net with less computation. Then, we give the
function of input for i-th bottleneck layer:

xi = Hi([x0, x1, · · · , xi−1])

Among them, [x0, x1, · · · , xi−1] represents the feature maps
of layer 0, 1, · · · , i − 1, and H means to concatenate all of
these previous tensors. In addition, we add k feature maps
amongst each bottleneck layer. Similarly, each transition layer
consists of 1×1 convolution kernel and 2×2 pooling layer
and compression ratio θ is designed to reduce the feature map
dimension. In the end, we connect the last dense block directly
to a fully connected layer network contains 1024 hidden units
to get frame-to-frame translation and rotation estimation as
our final outputs.

TABLE I
NUMBER OF BOTTLENECK LAYERS IN DENSE BLOCK

Layers Number of bottleneck layers
Dense Block1 L=4
Dense Block2 L=6
Dense Block3 L=8
Dense Block4 L=8

C. Motion Map Generation

The trajectory of VO we plot with ground truth map is
a visualization of our results based on KITTI VO/SLAM
benchmark [8]. On account of the high sampling frequency
of camera which results in smaller movement of the car in a
single sampling period, we assume the movement of the car is
linear and ignore the influence of the height. Thus, we come
up with a simple solution to recover the pose and generate a
motion map.

D. IMU Correction

The insensitivity of rotation of our neural network brings
about cumulative estimation error in angle which causes great
impact on the trajectories reconstruction. In order to reduce
the angle error, we combine IMU data with our LightVO
using Kalman Filter (KF) under the approximation that VO
system in linear variation. Moreover, we pre-integrate IMU
data in each sampling period which overlooks the data loss
of IMU and sufficiently decreases calculation. The drawback
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of inertial navigation, as is well-known, is cumulative error
caused by quadratic integral error. We set the IMU translation
penalty to the observed noise which accumulates with time as
shown in Algorithm1.

Algorithm 1 IMU Correction
Input:

Visual relative translation vector, Trv;
Visual relative rotation vector, Rrv;
IMU relative translation vector, Tri;
IMU relative rotation vector, Rri;
Initial translation, Tvi0;
Initial rotation, Rvi0;
Kalman filter state, x;
Observation state, µi;
Sequence length, L;
Variance of VO relative vector, R;
Variance of IMU result, Q;

Output:
Corrected translation and rotation matrix, [Tvi, Rvi];

1: x0 = [Tvi0, Rvi0];
2: for k in [1, L] do
3: µk = xk−1 + [Trv, Rrv];
4: S = rk−1 +R;
5: Qtk = Qt(k−1)+a× (b×k)c; (Set the IMU translation

penalty)
6: Qrk = Qr(k−1);

7: Qk =

[
Qtk 0
0 Qrk

]
;

8: µik = xk−1 + [Tri, Rri];
9: K = S/(S +Qt);

10: xk = µk +K × (µik − µk);
11: rk = I −K × S;
12: end for
13: return x;

IV. EXPERIMENTAL RESULTS

In order to demonstrate the performance of our method,
our odometry method is evaluated in the well-known KIT-
TI VO/SLAM benchmark [8]. We choose the open source
monocular visual odometry scheme VISO2-M [2], the deep
learning P-CNN [17] scheme with good effect and the real-
time deep learning VO scheme Flowdometry [3] as com-
parisons, the superiority of our proposed solution has been
verified.

A. Dataset

The KITTI VO/SLAM [8] is one of the most widely used
benchmarks which contains 22 sequences (00-21) of images.
Sequences 00-10 have ground truth measured and calibrated
by GPS, while the others only provide raw images. All of
these sequences are collected by a 10fps frame rate camera
carried by a car which drives in urban area. Therefore, KITTI
VO/SLAM benchmark that includes various real-world scenes
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Fig. 3. Overfitting effect of VO results. (a) and (b) show the VO estimate
on training data (Seq.00) in overfitting and wellfitting,respectively. (c) and
(d) show the VO estimate on test data (Seq.09) in overfitting and wellfitting.

has enormous practical significance. We regard sequences 00-
07 as training set and 08-10 as testing set.

B. Training

Note that we do not put images directly into neural network
but regard the optical flow of two adjacent frames which is
extracted from TVNet [4] as the input of the network. And
labels which are the translation and rotation between every
two frames are calculated from the rotation matrix provided
by dataset.

Hardware in our training process is Nvidia Geforce Titan
XP GPU. We select Adma optimizer with 1 × 10−4 initial
learning rate and set batch size to 12. Underfitting and overfit-
ting, as we know, are two major problems causing poor results
in deep learning algorithm. In our experiment, overfitting
seriously restricts our model performance. Nevertheless, there
is no sufficient solution to overfitting problems in VO field.
In this paper, we adopt dropout and early stopping to solve
this problem. Comparing the results of (a) and (b), (c) and
(d) in Fig. 3, we can readily find the impact of overfitting
to the trajectory reconstruction. It also refers that overfitting
may cause severe loss of pose estimation in an unknown
environment from (a) and (c).

TABLE II
RUNNING TIME COMPARED WITH OTHER METHODS

Optical Flow Odometry Total
Parameter Calculation Calculation Execution

[s/fram] [s/fram] [s/fram]
LightVO 14M 0.039 0.008 0.047

Flowdometry[3] 50M 0.08 0.023 0.103

C. VO Results

We select Flowdometry which is proposed in literature [3]
as comparative item on account of its better performance
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than other optical flow schemes for computation speed. Ta-
ble II shows the running time of our scheme compered
with Flowdometry in the same hardware (i.e a single Nvidia
Geforce Titan XP GPU). Evidently, LightVO greatly reduces
the quantity of parameters and calculation.

Then we compare our results with other models in [2], [3]
and [17] (i.e Flowdometry, P-CNN, VISO2-M) in translation
and rotation mean error. Fig. 4 indicates that our model
exceeds others in translation accuracy but performs the worst
in rotation accuracy. We attribute this phenomenon to three
facts as follows. First, we only take one axis of rotation
into consideration referring to Flowdometry. Besides, rotation
samples are limited which makes network could not predict
well. Above all, to achieve real-time aim, we have greatly
reduced the amount of parameters but sacrificed the accuracy
of rotation.

VISO2-M P-CNN Flowdometry LightVO

translation (%)

rotation (deg/100m)

Fig. 4. Translation error and rotation error of the VO result

The robustness of an algorithm is important. Hence we
experiment with sequence 08, 09, 10 of KITTI dataset whose
collecting environment is different from our training set. Ta-
ble III shows the results of comparison, we find that traditional
dense optical flow method VISO2 and image-based deep
learning method P-CNN have a wide fluctuation in sequence
10 while the optical-flow-based deep learning methods (i.e our
LightVO, Flowdometry) have a relatively stable performance.
It reveals that method such as this can retain high precision
and overcome the shortcoming of dense optical flow which is
sensitive to illumination by deep learning.

TABLE III
LIGHTVO RESULT COMPERED WITH OTHER WORKS

VISO2-M [2] P-CNN [17] Flowdometry [3] LightVO
Seq Trans Rot Trans Rot Trans Rot Trans Rot

[%] [deg/m] [%] [deg/m] [%] [deg/m] [%] [deg/m]
08 19.39 0.0393 7.60 0.0187 9.98 0.0544 6.86 0.0838
09 9.26 0.0279 6.75 0.0252 12.64 0.0804 5.16 0.0675
10 27.55 0.0409 21.23 0.0405 11.56 0.0728 14.01 0.0983

Avg 18.55 0.0376 8.96 0.0235 10.77 0.0623 7.49 0.0813

In Fig. 5 we plot the trajectory reconstruction of sequence
08 and 10 by our LightVO compared with Flowdometry and
ground truth. It infers that our LightVO have a relatively
stable performance. However, the accumulation error of angle,
over time, deviate our trajectory from the ground truth. We
think that mainly owing to the lack of rotation information in
training set. In urban area, driving straight dataset is certainly

more than turning a corner. Thus, the information of tuning
data is obviously insufficient.
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Fig. 5. Trajectories of VO testing results on Sequence 08,10 compared with
Flowdometry
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Fig. 6. IMU-assist VO average errors on translation and rotation against
different path lengths

D. Corrected By IMU

Based on the evaluation method in [23], we calculate and
plot the average root mean square error of translation and ro-
tation error (RMSE) in Fig. 6. It reveals that error is amplified
at a short distance, while error tends to decrease as mileage
increases. We attribute this law to deficiency of training data
in our training, specifically, our network never learns the
condition it meets in test process. It also demonstrates that
the estimation error of rotation can be significantly reduced
by importing data from IMU. By contrast, there is no obvious
change in translation error assembling IMU. It because the
accumulative error of accelerometer makes the translation
estimation from inertial navigation untrusted.

TABLE IV
IMU CORRECT RESULT

LightVO Corrected by IMU
Seq Trans[%] Rot[deg/m] Trans[%] Rot[deg/m]
08 6.86 0.0838 2.04 0.0247
09 5.16 0.0675 1.98 0.0131
10 14.01 0.0983 3.72 0.0273

Avg 7.49 0.0813 2.28 0.0217

Table IV proves the assistance of IMU in a quantitative way.
We can intuitively find the addition of IMU indeed correct the
deficiency of LightVO in rotation estimation. It can be seen
more intuitively from Fig. 7 that our correction to rotation has
a macroscopic optimization effect on the entire VO system,
which is exactly what we expect.
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Fig. 7. Trajectories of IMU-assist VO testing results on Sequence 08,09,10

V. CONCLUSION

This paper proposes an IMU-assisted end-to-end monocular
VO system based on deep learning. The system inputs two
consecutive video frames to calculate the optical flow. Then
input the optical flow into the DenseNet to predict translation
and rotation information. Due to the structural adjustment of
the CNN architecture, a frame-to-frame estimation system
with translational accuracy over similar methods is imple-
mented using fewer parameters and lesser network training
time. The proposed method has better real-time performance
and higher translation precision. Using the IMU data to correct
the results with little computing resources, which makes up
for the shortcomings of the VO system and obtains satisfying
results. We finally implemented an IMU-assisted lightweight
deep learning-based visual odometry system.

There are several aspects for future improvements. It is
possible to extract key frames and establish multiple loss
functions to reduce the cumulative error to some extent. Our
IMU correction is a loosely coupled data coupling method.
In the future, IMU data can be added to a certain layer of
the neural network in order to implement the tight coupling
optimization method to implicitly model and obtain better
results.
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