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Abstract—Inertial navigation is a fundamental method for
pervasive indoor tracking and navigation. Although PDR based
on inertial navigation can achieve robust indoors and outdoors
positioning, the positioning accuracy does not meet the accuracy
we need, due to the error divergence of the system. We present
ZUPT with Kalman filter, a precise, robust technique tracks well
even when presented with very noisy sensor data. Key to our
ZUPT is zero velocity detection, the step to determine if the
person’s foot is in stance phase during walking. We used three
different methods to detect zero velocity moments and compare
their accuracy. Finally, we found that ZUPT using asymptotic
zero velocity detection greatly improved the accuracy of inertial
navigation. We believe that such a convergent and high precision
approach will improve the application of inertial navigation in
indoor positioning.

Index Terms—PDR, ZUPT, EKF

I. INTRODUCTION

Indoor localization has drawn much attention in recent years
because it can be of significant use in applications for both
civilian and military. For indoor navigation, GPS-like satellite
external positioning signals may be difficult to use due to
poor penetration. To tackle this challenge, many approaches
have been proposed to address the indoor localization problem
such as Wi-Fi [1]-[3], Bluetooth, radio frequency identification
(RFID) and inertial navigation system (INS) [4]-[5].

During indoor positioning technologies, Wi-Fi based on
fingerprinting approach need collect the vector value of the
strength of Wi-Fi signals, but Wi-Fi fingerprinting database
is unstable, and needs to be updated manually to prevent
the change of Wi-Fi signal sources [6]-[7]. Due to the short
distance of Bluetooth communication, so many Bluetooth
devices are required to cover the building, thus increasing the
hardware cost of indoor positioning. Though RFID is more
accurate and has strong penetration through walls and other
barriers [8]. RFID tags are more expensive than other similar
tags. In recent years, INS has become a popular solution for
location applications, since they have obvious non-dependence
and low-cost characteristics compared with above-mentioned
wireless location technology.

Indoor localization based on INS relies on the system
integrated inertial measurement unit (IMU), extrapolates the
targets motion path and realizes the target accurate localiza-
tion. However, it is difficult to meet high precision requirement
using traditional algorithm by mathematical integrate acceler-

ation and angular velocity, due to the error divergence of the
system.

We propose an approach based on zero velocity update
(ZUPT) with extended Kalman filter (EKF) to solve the
divergence in this paper. To have a better performance, we also
discuss three different methods for zero velocity detecting and
greatly improve the precision of indoor localization.

The remainder of this paper is organized as follows: Sec. II
describes the pedestrian dead reckoning (PDR) scheme. Sec.
III introduces the trajectory reconstruction algorithm including
EFK and three different zero velocity detection methods. Sec.
IV presents our experimental results and improvement. Sec. V
concludes the paper and discusses ideas for future work.

II. OVERVIEW OF THE PEDESTRIAN DEAD RECKONING
SCHEME

In this section, we give a brief description of PDR algorithm
structure.

The form of the inertial navigation system used in this paper
is to tie the IMU to the foot of a pedestrian.This method can
significantly reduce the error rate caused by sensors using the
footstep phases during pedestrian walking, and no additional
auxiliary equipment is required. Since we use a recursive
solution equation in strap-down inertial navigation system,
the trajectory update rate can be tracked with IMU sampling
rate. In this PDR algorithm, the method of reducing velocity
divergence is based on the velocity measurement of pedestrian
footstep on the ground. At this time, the velocity vector of
pedestrian footstep is close to zero vector, which is an effective
observation information. The method of error estimation based
on this information is also called zero velocity update (ZUPT).
The zero velocity in the zero velocity update is a pseudo
observation, that is, judging whether the footstep is on the
ground by the IMU data. However, the adaptive filter can
make a good estimate based on sensors information and the
INS calculation, and then improve the accuracy of pedestrian
trajectory estimation.

Fig. 1 shows the scheme of pedestrian trajectory estimation
based on IMU. We may assume that the process noise and
the observation noise in the system are both Gaussian white
noise with zero mean, and extended Kalman filter can be used
as the system optimization method. In the above hypothesis,
extended Kalman filter can best estimate the target state.The



Fig. 1. The scheme of ZUPT+EKF algorithm.

method is to use the velocity observation during zero velocity
as the Kalman filter observation, and to correct the velocity,
trajectory and attitude angle of pedestrians according to the
state transfer equation and the observation equation to obtain
a more accurate system state value.

III. PEDESTRIAN TRAJECTORY RECONSTRUCTION
ALGORITHM

In this section, a pedestrian trajectory estimation system
is introduced [9]. In this system, the position is estimated
according to Kalman filter, and ZUPT based on accurate zero
velocity detection of gait. The calculation process of pedestrian
trajectory estimation based on Kalman filter is shown as Fig.
2.

Fig. 2. The calculation process of pedestrian trajectory estimation based on
Kalman filter.

A. Basic Calculation of Pedestrian Trajectory Reconstruction
System

The recursive equation of attitude matrix of pedestrian
trajectory estimation system based on IMU is

Cn
b (tk) = Cn

b (tk−1)
2I + [ϕ]

2I − [ϕ]
(1)

In this equation

ϕ =

 0 −ωz(tk) ωy(tk)
ωz(tk) 0 −ωx(tk)
−ωy(tk) ωx(tk) 0

∆t (2)

ωx, ωy , ωz are output data from triaxial gyroscope,∆t =
tk − tk−1 is sampling time interval for gyroscope

After updating the attitude matrix at tk time, the velocity
and position of the sensors in the navigation coordinate can
be calculated by compensating the local gravity. The net
acceleration of the navigation coordinate system is obtained
as follows

accn = Cn
b accb −G (3)

where, G = [0, 0, g], g is the acceleration of local gravity, accb
is output data from triaxial accelerometer.

Finally, the position posn and veln are obtained by inte-
grating the IMU inertial acceleration accn. Due to the high
sampling frequency of IMU, the acceleration between two
adjacent sampling times can be considered constant.So the
equation of trajectory can be obtained in the following way

veln(tk) = veln(tk−1) + (accn(tk−1) + accn(tk))∆t/2 (4)
posn(tk) = posn(tk−1) + (veln(tk−1) + veln(tk))∆t/2 (5)

B. The EKF Algorithm

In this paper, there are nine states used in inertial navigation,
namely, velocity, attitude and position, both are three dimen-
sional vectors. We do not use these vectors directly as the
state quantity of Kalman filter, but use the error state quantity
associated with them. Therefore, the Kalman filter in this paper
estimates the error state vector rather than the state itself.

Error state vector of filter is

δxt =
[
δϕt δpt δvt

]
(6)

in this matrix, δϕt is attitude error vector, δϕt =
[δθt δγt δψt] contains roll, pitch and yaw. δpt and δvt are
position and velocity error vector. After initializing the error
vector and covariance matrix, Kalman filter is divided into two
stages: predicting stage and updating stage.

1) Predicting stage: For each sample update, the covariance
matrix of the error state is propagated as follows

Pk|k−1 = FkPk−1(Fk)T +Qk (7)

where Qk and Fk are noise matrix and error state transition
matrix. Commonly, Qk is symmetric matrix. Fk is

Fk =

 I3×3 03×3 03×3
03×3 I3×3 ∆t · I3×3
−∆t · Sk 03×3 3×3

 (8)

where Sk is an antisymmetric matrix consisting of the accel-
eration of a navigation coordinate system.



2) Update stage: In the system, the update stage of EKF is
carried out when the zero velocity is detected, that is, the
velocity vector of the observation is zero vector. With the
observation information, the inertial navigation system can
update the Kalman filter and correct the state quantity in the
system.

Since the observation input in the system is only a velocity
error vector, systematic observation matrix expression should
be

H =
[

03×3 03×3 I3×3
]

(9)

The attitude matrix, velocity and position vector of the initial
calculation should be corrected after the optimal error state
quantity is obtained in the system.

Therefore, in the pedestrian trajectory estimation system
based on pure inertial navigation, the velocity, attitude angle
and position vectors can be modified by EKF in the zero-
velocity update stage. Finally, a more accurate pedestrian
trajectory is obtained.

C. Zero Velocity Detection

Pedestrian walking consists of two phases: the stance phase
and the swing phase [10]-[13]. The gait cycle is shown in Fig.
3.

Fig. 3. The gait cycle.

To use the ZUPT properly, the stance phase should be
correctly detected by inertial sensors. The detection algorithms
in most papers are based on threshold [14]. Usually, using
short-term statistics of accelerometers [15], angular velocity or
a combination of two sensors, and compare it with predefined
thresholds to detect zero velocity intervals.

But this algorithms have different thresholds for different
people, depending on the walking pattern. As shown in Figs.
5(a)(d).

1) Variance zero velocity detection: The data of the gy-
roscopes appears to be stable when they step on the ground.
Based on this consideration, we choose variance based on IMU
mean squared value data to detect footsteps zero velocity. The
specific method is to place the mean squared value data of the
accelerometer or gyroscope into a sliding window of a fixed
size. When the variance of the sliding window is less than the
set threshold, it is determined to be zero velocity.

However, in Fig. 5(e) such an approach is not suitable for
determining the zero velocity of the footsteps during running.
Because the footstep is grounded in a running state and the
variance is large, it is usually not enough to judge whether the
footstep is grounded.

2) Differential zero velocity detection: With the data after
the difference, the data curve will be sharper. The differential
value of the gyroscope data when the pedestrian is stepping
on the ground is closer to zero to the pedestrian movement
and the accelerometer data and the gyro data modulus at this
time are very high, this information can be used to detect zero
velocity.

When the gyroscope data and acceleration data can satisfy
the following conditions, it can be determined whether the step
is the stance phase:

Gyr Difference < Dthreshold

Gyr norm < Gyr threshold

Acc norm < Acc threshold

(10)

Where the Dthreshold is the threshold value of the difference
value. Gyr norm and Acc norm are the modulus values
of the gyroscope and the acceleration three axes respective-
ly. Gyr threshold and Acc threshold are the judgment
threshold for the gyroscope and the acceleration. They are
larger constants, which can not appear in the inertial sensor
data under the stance phase, so as to avoid the zero speed
misjudgment under the high dynamic condition as shown in
Fig. 5(c)(f). Gyr Difference is differential value for the
three axes of gyroscope.

Gyr Difference = Gyr(t− τ)−Gyr(t) (11)

τ is empirical constant greater than zero.

Fig. 4. The output of the yaw error from EKF using attenuation factor (blue)
and without using attenuation factor (red).

3) Asymptotic zero velocity detection: The roll and pitch
will converge to the correct value with the zero velocity up-
dating, but the yaw will not, even will be prone to deviation.It
can be seen in Fig. 4 that at the beginning of the zero-velocity
updating of each step, the yaw error is estimated to be the peak.
At some point, the yaw error estimation is almost 0.01, which
is impossible for the true yaw error between pedestrian steps.
The reason for this deviation is that the false observations of
stance phase are too large in the initial moment. However,
The excessive observation error is reflected by the increase
of Kalman filter gain, which leads to the increase of the
Kalman filter’s yaw error estimation. Eventually the yaw of



(a) Threshold under normal pace (b) Variance detection under normal pace (c) Differential detection under normal pace

(d) Threshold under high pace (e) Variance detection under high pace (f) Differential detection under high pace

Fig. 5. Three different methods for zero velocity detection: based on fixed threshold, variance of gyro modulus and difference of gyro modulus. (a)(d) The
change of the triaxial mean squared value of gyroscope under normal speed and running speed. (b)(e) Show the case where the zero-velocity detection is
performed using the variance of the mean squared value of the IMU in two paces. (c)(f) We use the differential zero velocity detection on the mean squared
sensors data in two paces.

the trajectory was wrongly corrected. Therefore, in this paper,
the pedestrian trajectory reconstruction is improved by adding
the asymptotic attenuation factor.

In the traditional zero velocity updating, the attenuation
factor for the velocity observation is 1, that is, when the system
enters the stance phase, the velocity is measured as

Zvel = (υx,t, υy,t, υz,t) (12)

In this paper, the asymptotic correction of the velocity obser-
vation is performed, and the zero-velocity sliding window and
the logarithmic function are used to attenuate the correction
during initial zero-velocity updating time.

The calculation formula for observation input of EKF is as
follows

Zvel = ln(

k∑
i=k−w

zi/w · (e− 1) + 1) · (υx,t, υy,t, υz,t) (13)

where w is the sliding window size, zi is the zero speed
judgment value, 1 is at stance phases, and 0 is at swing phases;
e is a nature constant; k is the system time.

For the end of the zero-velocity updating, the attenuation
factor is not required for the velocity observation because the
compensation amount of the yaw of the reconstruction is small
relative to the initial of the zero-velocity updating.

Obviously, in Fig. 4 the yaw output error based on the
asymptotic zero velocity updating is more stable than the
traditional zero velocity updating, reducing the additional yaw
error caused by velocity which calculated by the navigation
algorithm directly using as the observation of EKF.

IV. EXPERIMENTAL RESULTS

In this section, We first compare the traditional zero ve-
locity detection approaches and other zero velocity detection
approaches in same states of the pedestrian trajectory.

Fig. 6 shows the results of trajectory running around the
basketball court (half court) and return to the origin is recon-
structed using different zero-velocity detection methods.

Fig. 6. The reconstruction of pedestrian trajectory using fixed threshold
detection (dark yellow), variance zero velocity detection (green), difference
zero velocity detection (blue), and pedestrian real path (red).

Fig. 7. The blue trajectory is the pedestrian trajectory based on the asymptotic
zero-velocity detection; the green trajectory is the pedestrian trajectory based
on the traditional zero-velocity detection, and the red trajectory is the reference
trajectory of the pedestrian real path.

In Fig. 6, we can see that the zero velocity is detected



by the fixed threshold of the mean square value of the
gyroscope, which is scattered to a certain extent in both length
and direction. Using the variance zero velocity detection has
the fastest divergence. Among them, using the differential
value of the gyroscope mean square value data to detect the
zero velocity moment is the closest to the true trajectory of
pedestrian. Because the pace of pedestrian in the experimental
scene is relatively fast, the use of fixed threshold detection and
variance zero velocity detection will cause missed detection,
resulting in the pedestrian trajectory estimation effect does
not converge in time, so that the pedestrian trajectory can be
diverged. The use of differential zero velocity detection can
accurately detect the stance phase of pedestrian.

In Fig. 7, it can be seen that the zero-velocity detection of
the two methods are almost no difference in short distance, the
pedestrian trajectory reconstruction based on the traditional
zero-velocity detection method has a larger deviation from
the asymptotic pedestrian trajectory with the time increasing.
From the starting point after 400 meters walking and then
back to the starting point, the error based on the asymptotic
pedestrian trajectory is smaller than the traditional method of
pedestrian trajectory error.

Differential zero velocity detection has a better performance
compared to variance zero velocity detection and fixed thresh-
old especially moving in high pace. But the trajectory is
not smooth enough in relatively fast pace. We propose an
asymptotic zero velocity detection with attenuation factor to
tackle the problem that traditional methods meet. Asymptotic
zero velocity detection is more smooth and less divergent
compared to traditional methods in reconstructed trajectory
from the experimental result.

V. CONCLUSION

This paper has described a pedestrian trajectory reconstruc-
tion algorithm using a sole foot-mounted IMU. The zero
velocity interval is detected accurately by using attenuation
factor at the initial of the stance phase on the velocity. As a
result, the navigation error was corrected.
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