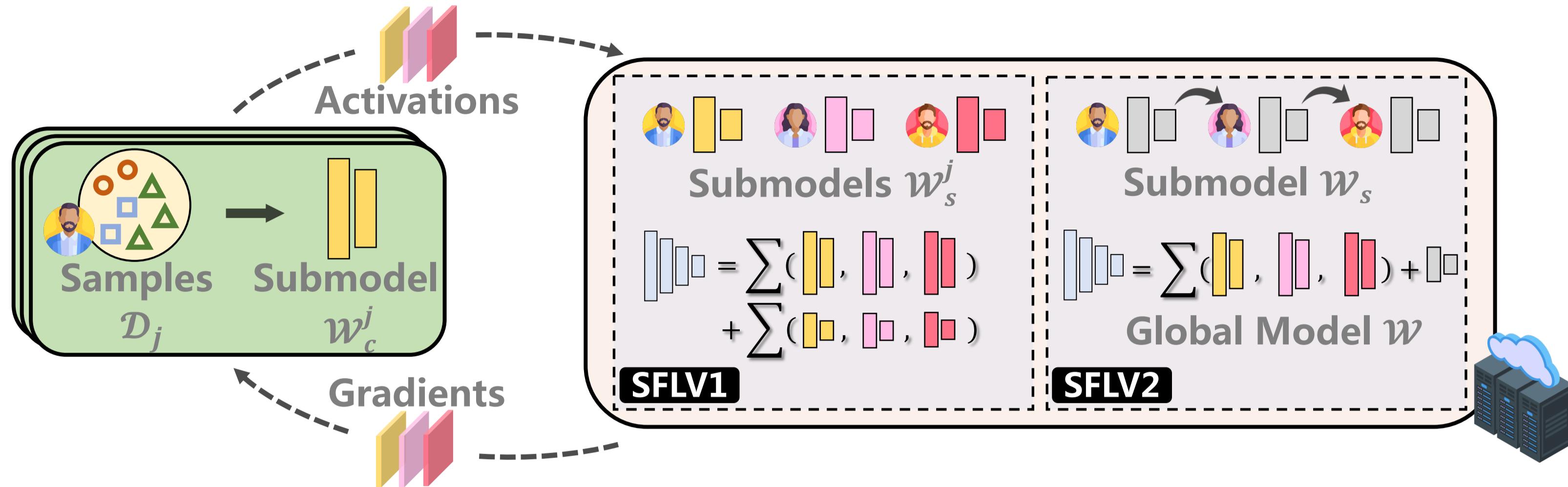




MOTIVATION



Split FL Partitioning model as $\mathcal{W} = [\mathcal{W}_c, \mathcal{W}_s]$, the server

- ◆ **Collaboratively** updates and aggregates with clients;
- ◆ **Directly** controls the learning pace of submodels \mathcal{W}_s .

 Inferior global \mathcal{W} under data heterogeneity across \mathcal{D}_j

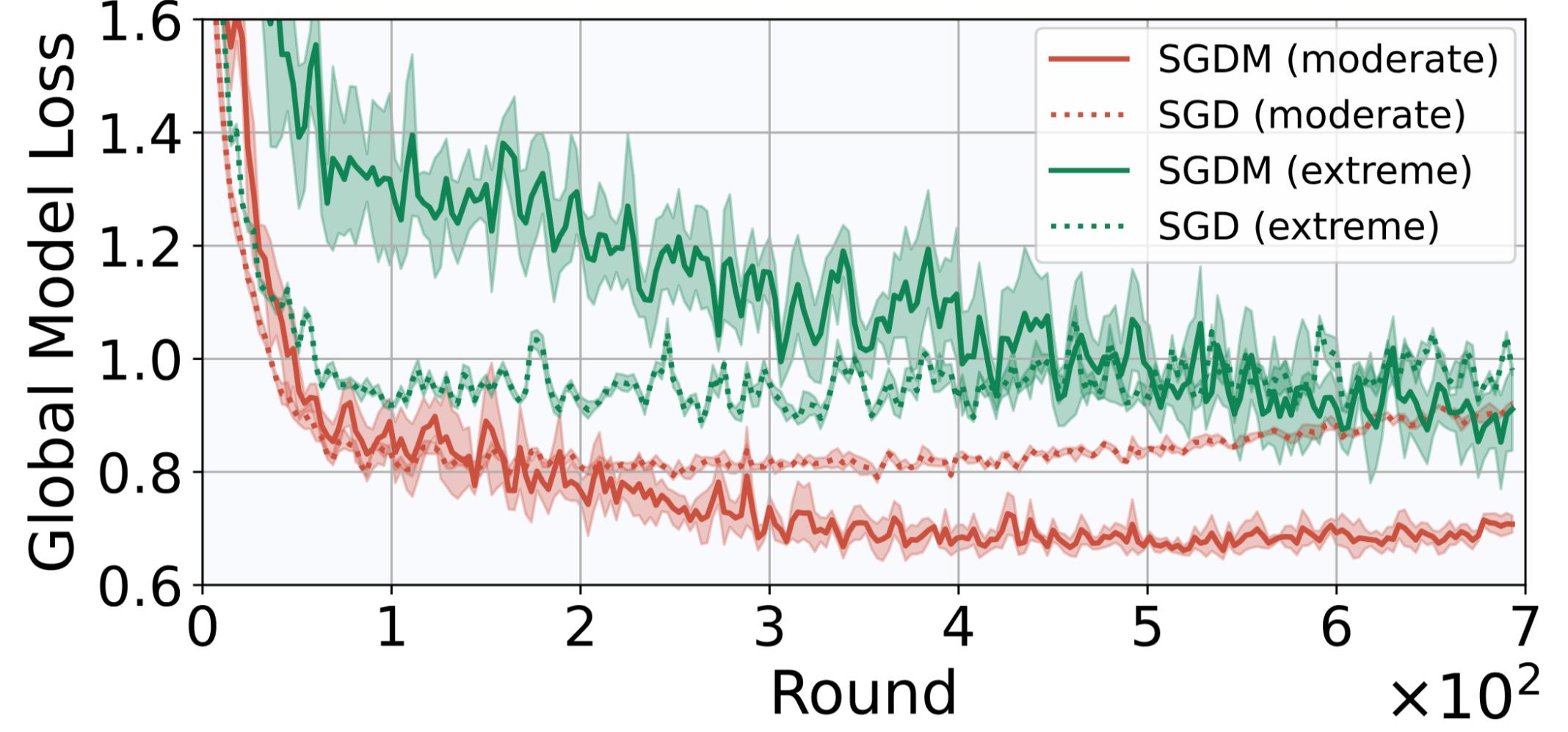
Comparisons	SFLV1	SFLV2	SMoFi
Server-side Updating	Parallel	Sequential	Parallel
Server-side Aggregation	$\bar{\tau} \in [1, N]$	No Aggregation	$\bar{\tau} = N$
Optimizer Resetting	$\bar{\tau}$ -dependent	Each Step	Each Step

Can we impose constraints on model training by inherent client-server interaction in Split FL without introducing additional overheads or privacy risk?

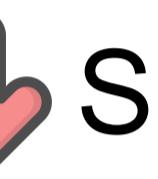
Contributions Our SMoFi achieves

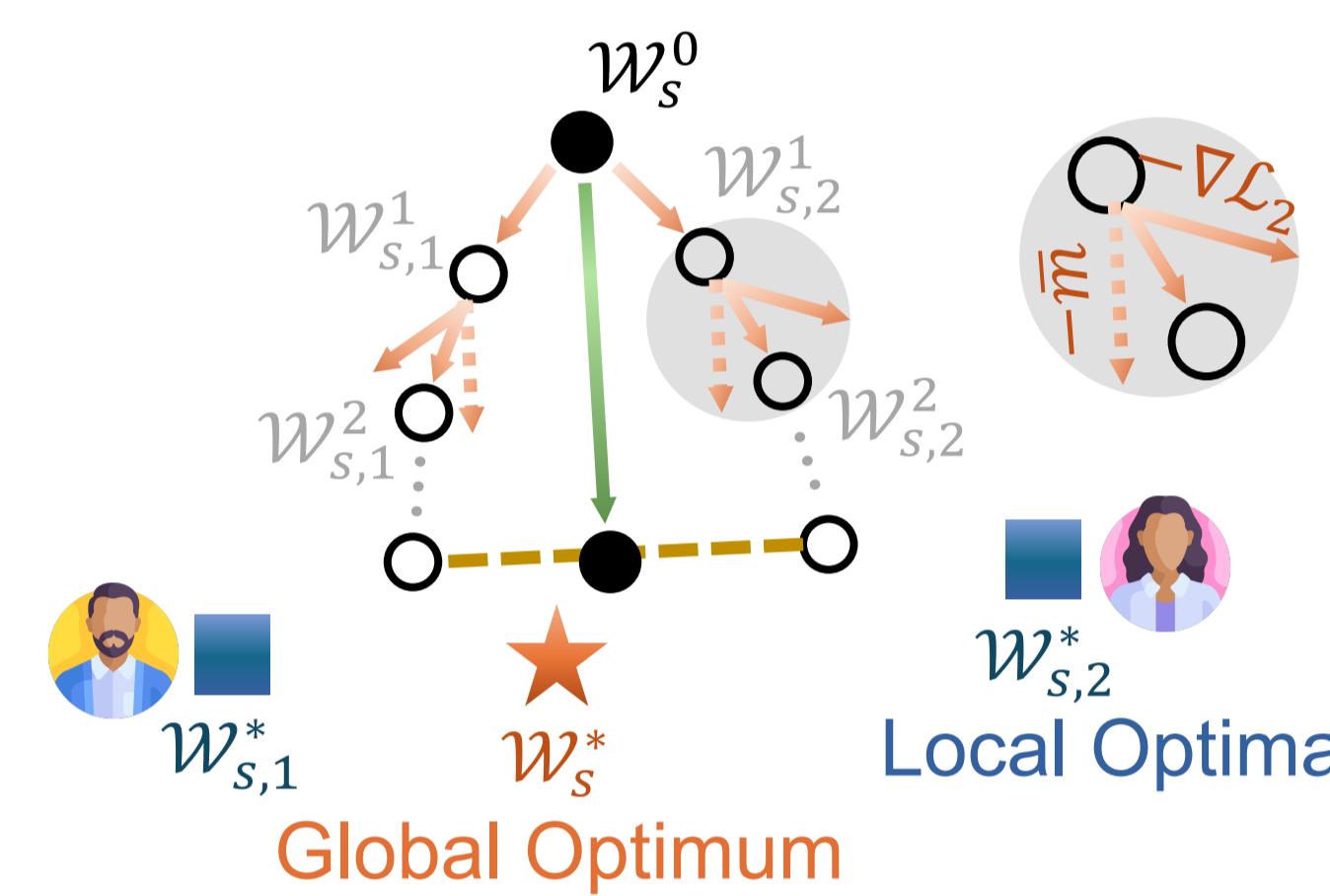
- ◆ **Plug-and-play**: integration with Split FL frameworks;
- ◆ **Transparency**: requiring no client-side modifications;
- ◆ Minimal overhead Same privacy guarantee
- ◆ **Performance Gains** in accuracy and convergence.

METHOD



Observations SGD with momentum in (Split) FL

- ◆ **Facilitates** convergence toward local optima;
- ◆ **Exacerbates** divergence across local updates;
- ◆ Higher accuracy (long-run)  Slower convergence
- ◆ More significant under higher data heterogeneity.



One-step SGDM

$$w_{s,j}^{\tau+1} = w_{s,j}^{\tau} - \eta m_{s,j}^{\tau+1}$$

$$(\text{SFLV1}) m_{s,j}^{\tau+1} = \beta m_{s,j}^{\tau} + \nabla \mathcal{L}$$

$$(\text{SMoFi}) m_{s,j}^{\tau+1} = \beta \bar{m}^{\tau} + \nabla \mathcal{L}$$

Alignment At each training step, the server performs

- ◆ **Fusion** of momentum buffers across optimizers:
- ◆ $\bar{m}^{\tau} = \frac{1}{|\mathcal{J}|} (\sum_{\mathcal{J}^{\tau}} m_{s,j}^{\tau+1} + \sum_{\mathcal{H}} S_{\alpha}^{\tau} m_{s,j}^{\tilde{\tau}})$, where $\mathcal{J} = \mathcal{J}^{\tau} \cup \mathcal{H}$;
- ◆ **Recording** of historical buffers into \mathcal{H} ;
- ◆ **Staleness-aware** weighted averaging by factor S_{α}^{τ} :

$$S_{\alpha}^{\tau} = (\tau - \tilde{\tau} + 1)^{\alpha}, \alpha < 0.$$

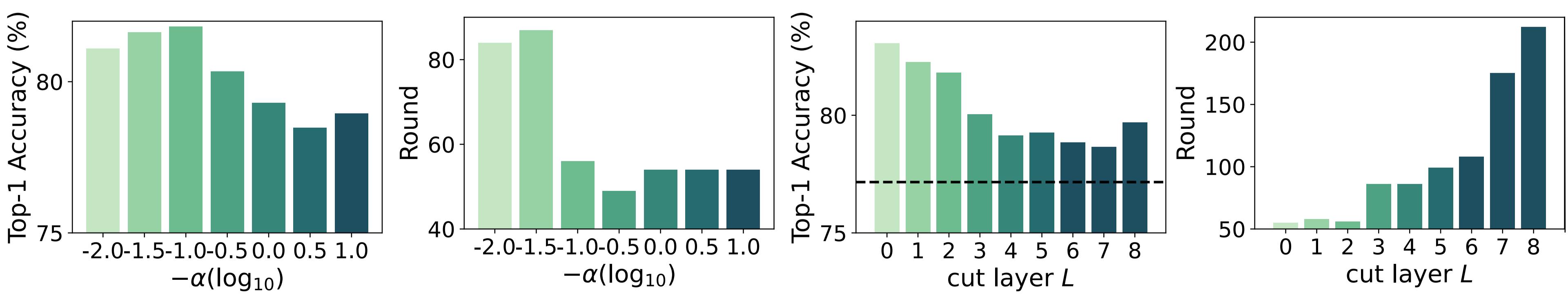
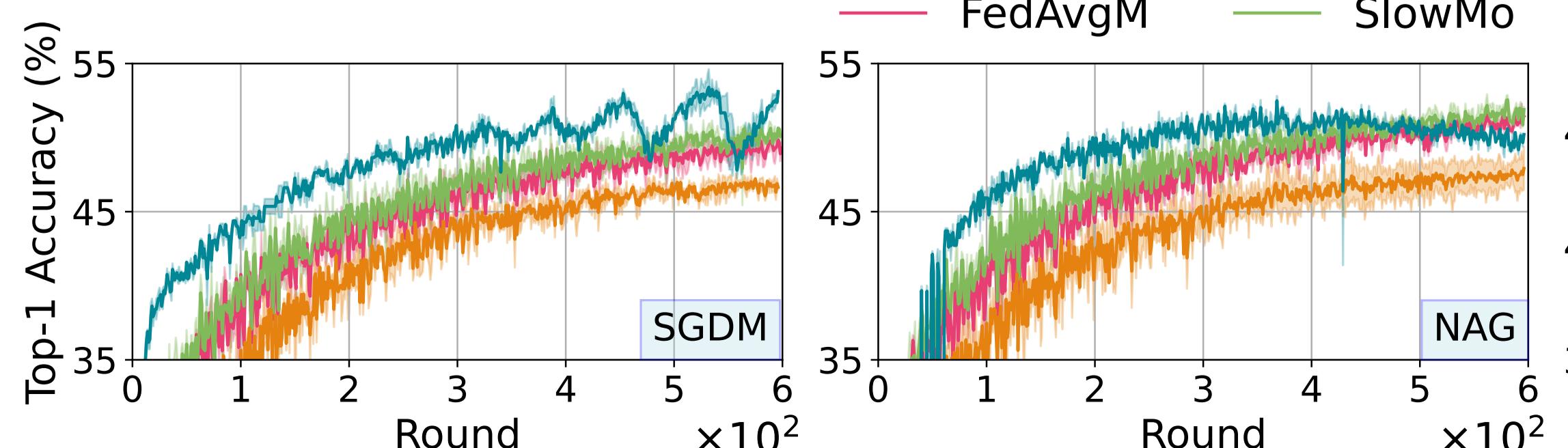
EVALUATION

Setup Three image tasks CIFAR-10/100 (ResNet-18) and Tiny-ImageNet (ResNet-34) are under a Dirichlet distribution with concentration parameter 0.2; a text task Shakespeare (stacked Transformers) is inherently non-IID data. We report Top-1 accuracy (Acc.) and Round-to-Accuracy (R) performance.

Setup	CIFAR-10		CIFAR-100		Tiny-ImageNet		Shakespeare	
	Acc. (%)	R						
FedAvg	77.16 ± 0.11	258	48.10 ± 0.36	183	33.43 ± 0.12	161	46.08 ± 0.53	170
FedAvgM	79.19 ± 0.09	190	50.28 ± 0.26	126	33.58 ± 0.34	57	49.13 ± 0.29	62
SlowMo	76.54 ± 0.06	177	50.96 ± 0.23	125	33.82 ± 0.29	44	47.62 ± 0.74	85
FedNAG	78.24 ± 0.43	170	48.30 ± 1.06	198	30.94 ± 0.44	335	42.56 ± 2.59	210
SFLV1 ($\bar{\tau} = 1$)	68.10 ± 0.57	>1000	38.43 ± 0.06	>600	21.81 ± 0.98	>400	44.07 ± 0.64	240
SFLV1 ($\bar{\tau} = E$)	77.84 ± 0.17	69	46.68 ± 0.21	40	35.47 ± 0.12	44	48.69 ± 0.63	162
SFLV2	79.42 ± 0.04	278	53.64 ± 0.51	143	34.72 ± 0.95	310	45.84 ± 1.39	99
MergeSFL	79.47 ± 0.09	76	50.16 ± 0.20	53	34.74 ± 0.55	118	42.35 ± 1.01	250
SMoFi	81.82 ± 0.61	56	53.83 ± 0.79	64	39.73 ± 0.05	16	51.83 ± 0.21	74

Sensitivity Two key hyper-parameters

- ◆ **Staleness α** : Trade-off between faster convergence and higher accuracy;
- ◆ **Cut Layer L** : Shallower model splits yield more performance gains.



Effectiveness SMoFi consistently delivers

- ◆ **Accuracy**: Superior to momentum-based and Split FL counterparts;
- ◆ **Convergence**: Up to 10.25× faster than baseline FedAvg.

Robustness Performance consistently benefits from momentum fusion across four widely used optimizers.