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Observations SGD with momentum in (Split) FL

¢ Facilitates convergence toward local optima,

¢ Exacerbates divergence across local updates;

{P Higher accuracy (Iong-run){} Slower convergence
¢ More significant under higher data heterogeneity.

Round

Split FL Partitioning model as W = [W,, W], the server

¢ Collaboratively updates and aggregates with clients;
¢ Directly controls the learning pace of submodels W..

= Inferior global W under data heterogeneity across D;
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Introducing additional overheads or privacy risk?

Alignment At each training step, the server performs
¢ Fusion of momentum buffers across optimizers:

IJl(Zgrrn”l+23L[ST m? ;), where J = J*UH;

¢ Recording of historical buffers into H;
¢ Staleness-aware weighted averaging by factor S;
St=(—-%t+1)% a<0.

Contributions Our SMoFi achieves

¢ Plug-and-play: integration with Split FL frameworks;

¢ Transparency: requiring no client-side modifications;
w Minimal overhead Same privacy guarantee

¢ Performance Gains in accuracy and convergence.

Setup Three image tasks CIFAR-10/-100 (ResNet-18) and Tiny-ImageNet (ResNet-34) are under a Dirichlet
distribution with concentration parameter 0.2; a text task Shakespeare (stacked Transformers) is inherently
non-lID data. We report Top-1 accuracy (Acc.) and Round-to-Accuracy (R) performance.

Setup CIFAR-10 CIFAR-100 Tiny-ImageNet Shakespeare
Methods Ace. (%) R Ace. (%) R Acc. (%) R Ace.(%) R Effectiveness SMoFi consistently delivers
FedAvg 77.1640.11 258 48.10+036 183 33.43+0.12 161 46.08+053 170
FedAvgM 79.1940.09 190 50.28+026 126 33.58+0.34 57 49.134+029 62 : ' _
SlowMo 76.5440.06 177 50.964023 125 33.8240.29 44 47.62+074 85 ¢ Accura_cy' SuperIOr to momentum-based
FedNAG 78241043 170 48.30+106 198 30.94+044 335 056225 210  and Split FL counterparts;
SFLVI1 (7 =1) 68.10+057 >1000 38.43+0.06 >600 21.81+098 >400 44.07+064 240
SFLV1 (7 = E) 77.84+017 69 46.68+021 40 3547+012 44 48.69+063 162 ¢ anvergence: Up to 10.25 % faster than
SFLV2 79.4240.04 278 53.64+051 143 34.72+095 310 45.84+139 99 .
MergeSFL 79474000 76 50.164020 53 34744055 118 42.354101 250 baseline FedAvg.
SMoFi1 81.82+0.61 56 53.83+0.79 64 39.73+0.05 16 51.83+0.21 74
Sensitivity Two key hyper-parameters g S 200-
> a 80- >
¢ Staleness a: Trade-off between faster ¢ 2 : 2 150
convergence and higher accuracy; g & 60 g 2 L 0o-
¢ Cut Layer L: Shallower model splits  g..1 ' [ ol AN llll i | I E— w
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yield more performance gains. ~a(log10) —a(logyo) cut layer L cut layer L
—— FedAvgM SlowMo FedNAG  —— SMofFi
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Robustness Performance
consistently benefits from
momentum fusion across four
° widely used optimizers.
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