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Data Heterogeneity
Label skew and domain shift across clients lead to cross-
domain variance and inferior overall accuracy.
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Data-Driven Solutions
Directly use generative models to produce synthetic data
€ Rationale: Enrich local datasets to approximate IID silos;

€ But: Quality and diversity are bounded by the limited
scope of local knowledge and computational resource.

Can we design a generative framework utilizing
limited low-sensitivity cross-client knowledge and
task-relevant commonsense knowledge of LLMs?
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Our Flick achieves:
€ Higher model accuracy
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I. } ~ context rather than shift the focus away from the main subject.
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Overall Performance

Setup DomainNet in Dirichlet distribution with 100 clients;
each client only holds data from single domain.
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@ Accuracy: Flick consistently delivers superior model
accuracy by up to 11.35%.

@ Efficiency: Flick achieves up to 11.36x faster convergence
by reducing the required round-to-accuracy.

@ Given a list of captions: {Client-Specific Knowledge}, select those that are\

relevant to the main subject {Dog}. Then, analyze the selected captions,
which depict various scenes and contexts but consistently center around the
main subject {Dog}.

Based on this analysis, generate {4} new text prompts that still focus on the
main subject of {Dog}. You may fuse domains, styles, entities, or contexts
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1| ["there is a colorful painting of a dog wearing a hat surrounded by balloons",
: "an image of a dog playing fetch with a frisbee in a sunny park",

1| '"acartoon dog dressed as a superhero flying through the sky with a cape",
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\"a black and white sketch of a dog lying on a cozy rug next to a fireplace®.]
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Retrieval

"a whimsical palntlng ofa
B dog wearing a colorful hat
and surrounded by flowers™
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Ablation Study @@ E O AG  #Round #Sample
Four core components $ v v vl = =
- H 024029
JOI.ntI’y Cor?trlb.ute to vV X Vv V| 92902 27 312
Flick's gainsinmodel o o x v | 8011500 26 630
performance and vV Vv v X | 9375x004 19 504
generation efﬁciency_ v Vv Vv V| 94.49+0.10 11 270
* Results on the PACS dataset.

Overhead FedProx Flick

) Energy | 0.44 1.33
Flick reaches the target (kwh)
model performance (e 1 21 S
with lower overhead GPU Hours | 34.61 91.79
compared with baseline. (G8houn ; ; . . .
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