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Client Utility The quality of local labels/data has
significant impacts on the performance of global model.
We define such impacts as client utility.
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Client-Transparent Estimation
Ideally, inference of client utility should be
€ Transparent: no additional client-side operations;

@ Indicative: inversely proportional to the actual noise level.
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FedTrans allows to:

€ maintain the same level of privacy guarantee as other
SOTA frameworks;

@ guide client selection for global model aggregation by
selecting clients with optimal utilities.

Performance-based Inference
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We use auxiliary data (at the central server) to infer client utility by
fusing two kinds of information: local model performance and weights.

Challenges

Intuition Approach

Performance-based Round-reputation Matrix Not fully reliable

Weight-based Discriminator Lack of labels

Bayesian Inference

We proposed a unified Bayesian framework and apply a
Variational Inference algorithm to update the parameters.
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Discriminator
sj ~ Ber(6;) = Ber(f"4(x;))
Round Informativeness
1y ~ Beta(a, )
Round-Reputation Matrix

p(Ryj|sj,7;) = 1"~

Rij) 4 (1- T))H(SjiRi,j)

We construct the local noise in both label and feature space.
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Resolution

Setup CIFAR10 in Dirichlet distribution with 30% noisy clients; auxiliary
dataset contains 200 samples randomly selected from test set.

Hybrid (intra-)

Label (intra-)

Image (intra-)

FedAvg (McMahan et al., 2017)

68.3% + 0.6%

66.4% + 0.3%

69.2% + 2.4%

FLDebugger (Li et al., 2021)
Oort (Lai et all,[2021)

Robust-FL (Yang et al., 2022b)
RHFL (Fang & Ye,2022)

DivFL (Balakrishnan et al., 2022)
FedCorr (Xu et al., 2022)

64.3% £ 0.3%
56.2% + 0.3%
70.6% + 0.8%
70.1% £ 0.1%
70.1% £ 1.0%
73.7% + 0.4%

61.2% + 0.4%
56.8% + 0.8%
73.4% + 0.4%
68.8% + 0.4%
70.7% £ 0.3%
75.7% + 0.1%

66.1% + 0.5%
65.8% + 0.0%
70.8% £ 0.1%
73.0% £ 0.1%
72.7% + 0.6%
73.7% + 0.6%

Fine-tuned DivFL
Fine-tuned FedCorr

70.6% + 0.4%
68.2% £ 0.2%

68.7% + 0.2%
69.2% + 0.3%

70.0% + 0.4%
67.0% £ 0.2%

€ Top-1 accuracy: global model of FedTrans consistently
outperforms other baselines in all noise settings.

€ Auxiliary data efficiency: FedTrans exploits it in a more
efficient way than simply fine-tuning the global model.
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Overheads

The overall optimization time
significantly decreases as
FL proceeds with diminishing
discriminator iterations.
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