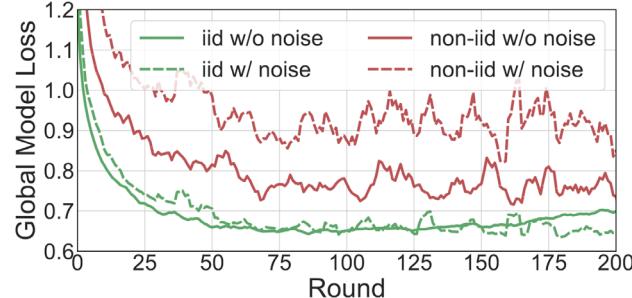


MOTIVATION

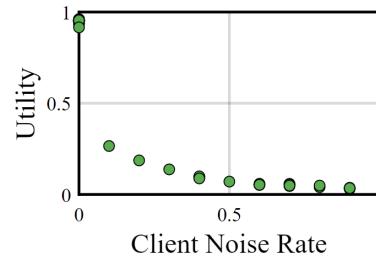
Client Utility The **quality of local labels/data** has significant impacts on the performance of global model. We define such impacts as client utility.



Client-Transparent Estimation

Ideally, inference of client utility should be

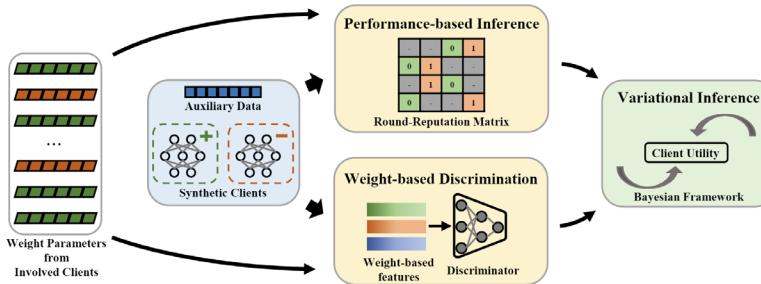
- ◆ **Transparent**: no additional client-side operations;
- ◆ **Indicative**: inversely proportional to the actual noise level.



FedTrans allows to:

- ◆ maintain the **same level of privacy guarantee** as other SOTA frameworks;
- ◆ guide **client selection** for global model aggregation by selecting clients with optimal utilities.

METHOD

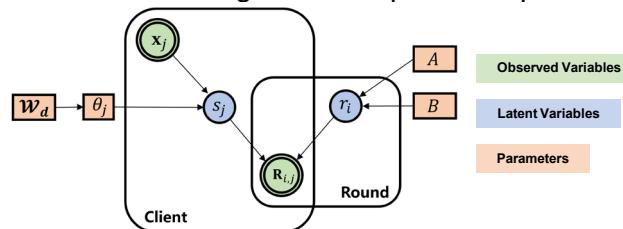


We use **auxiliary data** (at the central server) to infer client utility by fusing two kinds of information: local model performance and weights.

Intuition	Approach	Challenges
Performance-based	Round-reputation Matrix	Not fully reliable
Weight-based	Discriminator	Lack of labels

Bayesian Inference

We proposed a unified **Bayesian framework** and apply a **Variational Inference** algorithm to update the parameters.



Discriminator

$$s_j \sim \text{Ber}(\theta_j) = \text{Ber}(f^{w_d}(x_j))$$

Round Informativeness

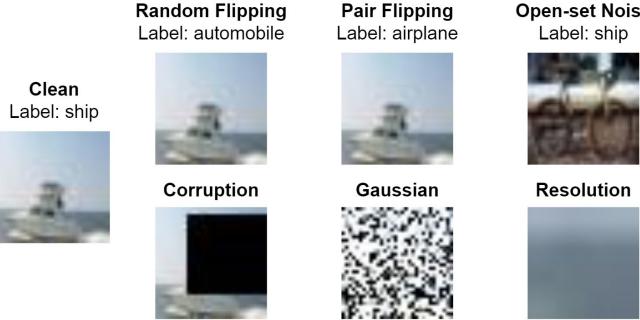
$$r_j \sim \text{Beta}(\alpha_j, \beta_j)$$

Round-Reputation Matrix

$$p(R_{i,j} | s_j, r_j) = r_j^{\mathbb{1}(s_j=R_{i,j})} + (1-r_j)^{\mathbb{1}(s_j \neq R_{i,j})}$$

EVALUATION

We construct the local noise in both **label** and **feature** space.

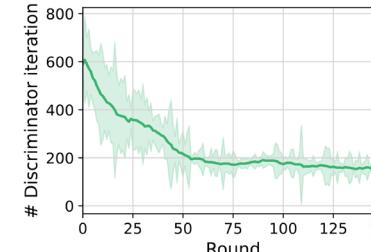


Setup CIFAR10 in Dirichlet distribution with 30% noisy clients; auxiliary dataset contains 200 samples randomly selected from test set.

	Hybrid (intra-)	Label (intra-)	Image (intra-)
FedAvg (McMahan et al., 2017)	$68.3\% \pm 0.6\%$	$66.4\% \pm 0.3\%$	$69.2\% \pm 2.4\%$
FLDebugger (Li et al., 2021)	$64.3\% \pm 0.3\%$	$61.2\% \pm 0.4\%$	$66.1\% \pm 0.5\%$
Oort (Lai et al., 2021)	$56.2\% \pm 0.3\%$	$56.8\% \pm 0.8\%$	$65.8\% \pm 0.0\%$
Robust-FL (Yang et al., 2022b)	$70.6\% \pm 0.8\%$	$73.4\% \pm 0.4\%$	$70.8\% \pm 0.1\%$
RHFL (Fang & Ye, 2022)	$70.1\% \pm 0.1\%$	$68.8\% \pm 0.4\%$	$73.0\% \pm 0.1\%$
DivFL (Balakrishnan et al., 2022)	$70.1\% \pm 1.0\%$	$70.7\% \pm 0.3\%$	$72.7\% \pm 0.6\%$
FedCorr (Xu et al., 2022)	$73.7\% \pm 0.4\%$	$75.7\% \pm 0.1\%$	$73.7\% \pm 0.6\%$
Fine-tuned DivFL	$70.6\% \pm 0.4\%$	$68.7\% \pm 0.2\%$	$70.0\% \pm 0.4\%$
Fine-tuned FedCorr	$68.2\% \pm 0.2\%$	$69.2\% \pm 0.3\%$	$67.0\% \pm 0.2\%$
FedTrans	$76.9\% \pm 0.3\%$	$75.7\% \pm 0.4\%$	$77.0\% \pm 0.2\%$

◆ **Top-1 accuracy**: global model of FedTrans consistently outperforms other baselines in all noise settings.

◆ **Auxiliary data efficiency**: FedTrans exploits it in a more efficient way than simply fine-tuning the global model.



Overheads

The overall optimization time **significantly decreases** as FL proceeds with diminishing discriminator iterations.